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Abstract

Privacy protection from surreptitious video recordings is an
important societal challenge. We desire a computer vision
system (e.g., a robot) that can recognize human activities and
assist our daily life, yet ensure that it is not recording video
that may invade our privacy. This paper presents a fundamen-
tal approach to address such contradicting objectives: human
activity recognition while only using extreme low-resolution
(e.g., 16x12) anonymized videos. We introduce the paradigm
of inverse super resolution (ISR), the concept of learning the
optimal set of image transformations to generate multiple
low-resolution (LR) training videos from a single video. Our
ISR learns different types of sub-pixel transformations opti-
mized for the activity classification, allowing the classifier to
best take advantage of existing high-resolution videos (e.g.,
YouTube videos) by creating multiple LR training videos tai-
lored for the problem. We experimentally confirm that the
paradigm of inverse super resolution is able to benefit activity
recognition from extreme low-resolution videos.

Introduction

Cameras are becoming increasingly ubiquitous and perva-
sive. Millions of surveillance cameras are recording peo-
ple’s everyday behavior at public places, and people are us-
ing wearable cameras designed for lifelogging (e.g., GoPro
and Narrative Clips) to obtain large collections of egocentric
videos. Furthermore, robots at public places are equipped
with multiple cameras for their operation and interaction.

Simultaneously, such abundance of cameras is also caus-
ing a big societal challenge: privacy protection from un-
wanted video recordings. We want a camera system (e.g., a
robot) to recognize important events and assist human daily
life by understanding its videos, but we also want to ensure
that it is not intruding the user’s or others’ privacy. This leads
to two contradicting objectives. More specifically, we want
to (1) prevent the camera system from obtaining detailed vi-
sual data that may contain private information (e.g., faces),
desirably at the hardware-level. Simultaneously, we want to
(2) make the system capture as much detailed information
as possible from its video, so that it understands surround-
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ing objects and ongoing events for surveillance, lifelogging,
and intelligent services.

There have been previous studies corresponding to such
societal needs. Templeman et al. (2014) studied scene recog-
nition from images captured with wearable cameras, detect-
ing locations where the privacy needs to be protected (e.g.,
restrooms). This will allow the device to be automatically
turned off at sensitive locations. One may also argue that
limiting the device to only process/transfer feature informa-
tion (e.g., HOG and CNN) instead of visual data will make
it protect privacy. However, recent studies on feature “visu-
alizations” (Vondrick et al. 2015) showed that it actually is
possible to recover a good amount of visual information (i.e.,
images and videos) from the feature data. Furthermore, all
these methods described above rely on software-level pro-
cessing of original high-resolution videos (which may al-
ready contain privacy sensitive data), and there is a possibil-
ity of these original videos being snatched by cyber attacks.

A more fundamental solution toward the construction of
a privacy-preserving vision system is the use of anonymized
videos. Typical examples of anonymized videos are videos
made to have extreme low resolution (e.g., 16x12) by us-
ing low resolution (LR) camera hardware, or based on im-
age operations like Gaussian blurring and superpixel cluster-
ing (Butler et al. 2015). Instead of obtaining high-resolution
videos and trying to process them, this direction simply lim-
its itself to only obtain anonymized videos. The idea is that,
if we are able to develop reliable computer vision ap-
proaches that only utilize such anonymized videos, we
will be able to do the recognition while preserving pri-
vacy. Such a concept may even allow cameras that can in-
telligently select their resolution; it will use high-resolution
cameras only when it is necessary (e.g., emergency), deter-
mined based on extreme low-resolution video analysis.

There were previous attempts under such paradigm: (Dai
et al. 2015). This conventional approach was to resize the
original training videos to fit the target resolution, making
training videos to visually look similar to the testing videos.
However, there is an intrinsic problem: because of natural
limitations of what a pixel can capture in a LR video, fea-
tures being extracted from LR videos change a lot depend-
ing on sub-pixel camera viewpoint changes even when they
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Figure 1: Even though LR images in both (a) and (b) are
from the same original scene, because of the inherent limita-
tion of pixels, the two LR images show very different visual
structures when the camera projection is slightly different.
The pixel values corresponding to objects (red box: a human
/ magenta box: a can) differ significantly in these two LR
images, making their visual features also different.

contain the exact same object/human: Figure 1. This makes
the decision boundary learning unstable.

In this paper, we introduce the novel concept of inverse
super resolution to overcome such limitations. Super reso-
lution reconstructs a single high-resolution image from a set
of low-resolution images. Inverse super resolution is the re-
verse of this process: we learn to generate a set of informa-
tive LR images from one HR image. Although it is natural
to assume that the system obtains only one low-resolution
‘testing’ video for privacy protection, in most cases, the sys-
tem has an access to a rich set of high-resolution ‘training’
videos publicly available (e.g., YouTube). The motivation
behind inverse super resolution is that, if it really is true that
a set of low-resolution images contains comparable amount
of information to a high-resolution image, then we can also
generate a set of LR training images from a HR image so that
the amount of training information is maintained. Our ap-
proach learns the optimal set of LR transformations to make
such generation possible, and uses the generated LR videos
to obtain LR decision boundaries (Figure 2).

Related works

Human activity recognition is a computer vision area with
a great amount of attention (Aggarwal and Ryoo 2011).
There not only have been studies to recognize activities
from YouTube-style videos (Ng et al. 2015) or surveil-
lance videos, but also first-person videos from wearable
cameras (Kitani et al. 2011; Pirsiavash and Ramanan 2012;
Lee, Ghosh, and Grauman 2012; Li, Fathi, and Rehg 2013;
Poleg, Arora, and Peleg 2014) and robots (Ryoo and
Matthies 2013). However, they only focused on developing
features/methods for more reliable recognition, without any

Figure 2: A figure comparing (a) the conventional learn-
ing framework for low-resolution videos vs. (b) our learning
framework using the proposed inverse super resolution.

privacy aspect consideration.
On the other hand, as mentioned in the introduction, there

are research works whose goal is to specifically address pri-
vacy concerns regarding unwanted video taking. Templeman
et al. (2014) designed a method to automatically detect lo-
cations where the cameras should be turned off. (Tran et
al. 2016) was similar. Dai et al. (2015) studied human ac-
tivity recognition from extreme low resolution videos, dif-
ferent from conventional activity recognition literature that
were focusing mostly on methods for images and videos
with sufficient resolutions. Although their work only fo-
cused on recognition from 3rd-person videos captured with
static cameras, they showed the potential that computer vi-
sion features and classifiers can also work with very low
resolution videos. However, they followed the ‘conventional
paradigm’ described in Figure 2 (a), simply resizing orig-
inal training videos to make them low resolution. (Shokri
and Shmatikov 2015) studied privacy protection for convo-
lutional neural networks (CNNs), but they consider the pri-
vacy protection only at the training phase and not at the test-
ing phase, unlike ours.

Inverse super resolution

Inverse super resolution (ISR) is the concept of generating
a set of low-resolution training images from a single high-
resolution image, by ‘learning’ different image transforms
optimized for the recognition task. Such transforms may in-
clude sub-pixel translation, scaling, rotation, and other affine
transforms emulating possible camera motion.

Our ISR targets the realistic scenario where the system is

4256



prohibited from obtaining high-resolution videos in the test-
ing phase due to privacy protection but has an access to a
rich set of high-resolution training videos publicly available
(e.g., YouTube). Instead of trying to enhance the resolution
of the testing video (which is not possible with our scale fac-
tor x20), our approach is to make the system learn to benefit
from high-resolution training videos by imposing multiple
different sub-pixel transformations. This enables us to better
estimate the decision boundary in the low-resolution feature
space, as illustrated in Figure 2.

From the super resolution perspective, this is a different
way of using the super resolution formulation, whose as-
sumption is that multiple LR images may contain a com-
parable amount of information to a single HR image. It is
called ‘inverse’ super resolution since it follows the super
resolution formulation, while the input and the output is the
reverse of the original super resolution.

Inverse super resolution formulation

The goal of the super resolution process is to take a series
of low resolution images Yk, and generate a high resolution
output image X (Yang and Huang 2010). This is done by
considering the sequence of images Yk to be different views
of the high resolution image X , subject to camera motion,
lens blurring, down-sampling, and noise. Each of these ef-
fects is modeled as a linear operator, and the sequence of
low resolution images can be written as a linear function of
the original high resolution image:

Yk = DkHkFkX + Vk, k = 1 . . . n (1)

where Fk is the motion transformation, Hk models the blur-
ring effects, Dk is the down-sampling operator, and Vk is
the noise term. X and Yk are both images flattened into 1D
vectors. In the original super resolution problem, none of
these operators are known exactly, resulting in an ill-posed,
ill-conditioned, and most likely rank deficient problem. Su-
per resolution research focuses on estimating these opera-
tors and the value of X by adding additional constraints to
the problem, such as smoothness requirements.

Our inverse super resolution formulation can be described
as its inverse problem. We want to generate multiple (i.e.,
n) low resolution images (i.e., Yk) for each high resolution
training image X , by applying the optimal set of transforms
Fk, Hk, and Dk. We can simplify our formulation by re-
moving the noise term Vk and the lens blur term Hk, since
there is little reason to further contaminate the resulting low-
resolution images and confuse the classifiers in our case:

Yk = DkFkX, k = 1 . . . n. (2)

In principle, Fk, the camera motion transformation, can be
any affine transformation. We particularly consider combi-
nations of shifting, scaling, and rotation transforms as our
Fk. We use the standard average downsampling as our Dk.

The main technical challenge here is that we need to learn
the set of different motion transforms S = {Fk}nk=1 from a
very large pool, which is expected to maximize the recogni-
tion performance when applied to generate the training set
for classifiers. Such learning should be done based on train-
ing data and should be dependent on the features and the

classifiers being used, solving the optimization problem in
the feature space.

Once S is learned, the inverse super resolution allows gen-
eration of multiple low resolution images Yk from a single
high resolution image X by following Equation 2. Low res-
olution ‘videos’ can be generated in a similar fashion to the
case of images. We simply apply the same Dk and Fk for
each frame of the video X , and concatenate the results to
get the new video Yk.

Recognition with inverse super resolution

Given a set of transforms S = {Fk}nk=1, the recognition
framework with our inverse super resolution is as follows:
For each of original high resolution training video Xi, we
apply Equation 2 to generate n number of Yik = DkFkXi.
Let us denote the ground truth label (i.e., activity class) of
the video Xi as yi. Also, we describe the feature vector of
the video Yik more simply as xik. The features extracted
from all LR videos generated using inverse super resolution
become training data. That is, the training set Tn can be de-
scribed as T (S) = ∪i{〈xik, yi〉}nk=0 where n is the number
of LR training samples to be generated per original video.
xi0 is the original sample resized to LR as is.

Based on T (S), a classification function f(x) with the
parameters θ is learned. The proposed approach can cope
with any types of classifiers in principle. In the case of SVMs
with the non-linear kernels we use in our experiments,

fθ(x) =
∑

j

αjyjK(x, xj) + b (3)

where αj and b are SVM parameters, xj are support vectors,
and K is the kernel function being used.

Transformation learning
In the previous section, we presented a new framework that
takes advantage of LR training videos generated from HR
videos assuming a ‘given’ set of transforms. In this section,
we present methods to ‘learn’ the optimal set of such mo-
tion transforms S = {Fk}nk=1 based on video data. Such S
learned from video data is expected to perform superior to
transforms randomly selected or uniformly selected, which
we further confirm in our experiments.

Method 1 - decision boundary matching

Here, we present a Markov chain Monte Carlo (MCMC)-
based search approach to find the optimal set of transforms
providing the ideal activity classification decision bound-
aries. The main idea is that, if we have an infinite number
of transforms Fk generating LR training samples, we would
be able to learn the best low-resolution classifiers for the
problem. Let us denote such ideal decision boundary as fθ∗ .
By trying to minimize the distance between fθ∗ and the de-
cision boundary that can be learned with our transforms, we
want to find a set of transformations S∗:

S∗ = argmin
S

∣∣fθ∗ − fθ(S)

∣∣

≈ argmin
S

∑

x∈A

∣∣fθ∗(x)− fθ(S)(x)
∣∣

s.t. |S∗| = n

(4)
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where fθ(S)(x) is a classification function (i.e., a deci-
sion boundary) learned from the training set T (S) (i.e., LR
videos generated using transforms in S). A is a validation
set with activity videos, being used to measure the empirical
similarity between two classification functions.

In our implementation, we further approximate the above
equation, since learning fθ∗(x) conceptually requires an in-
finite (or very large) number of transform filters Fk. That is,
we assume fθ∗(x) ≈ fθ(SL)(x) where SL is a set with a
large number of transforms. We also use SL as the ‘pool’ of
transforms we consider: S ⊂ SL.

We take advantage of a MCMC sampling method with
Metropolis-Hastings algorithm, where each MCMC action
is adding or removing a particular motion transform filter
Fk to/from the current set St. The transition probability a is
defined as

a =
π(S′) · q(S′, St)

π(St) · q(St, S′)
(5)

where the target distribution π(S) is computed by

π(S) ∝ e−
∑

x∈A|fθ∗ (x)−fθ(S)(x)|, (6)

which is based on the argmin term of Equation 4. We model
the proposal density q(S′, S(t)) with a Gaussian distribution
|S′| ∼ N(n, σ2) where n is the number of inverse super res-
olution samples we are targeting (i.e., the number of filters).
The proposal S′ is accepted with the transition probability
a, and it becomes St+1 once accepted.

Using the above MCMC formulation, our approach goes
through multiple iterations from S0 = {} to Sm where m
is the number of maximum iterations we consider. Based
on the sampled S0, . . . , Sm, the one with the maximum
π(S) value is finally chosen as our transforms: S∗ =
argmaxSt π(St) with the condition |S| ≤ n.

Method 2 - maximum entropy

In this subsection, we propose an alternative methodology
to learn the optimal set of transform filters S∗. Although the
above methodology of directly comparing the classification
functions provides us a good solution for the problem, a fair
number of MCMC sampling iterations is needed for a re-
liable solution. It also requires a separate validation set A,
which often means that the system is required to split the
provided training set into the real training set and the valida-
tion set. This makes the transformation set learning itself to
use less training data in practice.

Here, we present another approach of using the entropy
measure. Entropy is an information-theoretic measure that
represents the amount of information needed, and it is of-
ten used to measure uncertainty (or information gain) in ma-
chine learning (Settles 2010). Our idea is to learn the set S∗
by iteratively finding transform filters F1···n that will provide
us the maximum amount of information gain when applied
to the (original HR) training videos we have.

We formulate the problem similar to the active learning
problem. At each iteration, we select Fk that will generate
new LR samples with the most uncertainty (i.e., maximum
entropy) measured based on the current classifier trained

with the current set of transforms: fθ(St). Adding such sam-
ples to the training set makes the new classifier to have the
most information gain. That is, we iteratively update our set
as St+1 = St ∪ {F t

∗} where

F t
∗ = argmax

k

∑

i

H(DkFkXi)

= argmax
k

−
∑

i

∑

j

Pθ(St)(yj |DkFkXi)

logPθ(St)(yj |DkFkXi).

(7)

Here, Xi is each video in the training set, and Pθ(St) is the
probability computed from the classifier fθ(St). We are es-
sentially searching for the filter that will provide the largest
amount of information gain when added to the current trans-
formation set St. More specifically, we sum the entropy H
(i.e., uncertainty) of all low resolution training videos that
can be generated with the filter Fk: H(DkFkXi).

The approach iteratively adds one transform F t
∗ at every

iteration t, which is the greedy strategy based on the en-
tropy measure, until it reaches the nth round: S∗ = Sn.
Notice that such entropy can be measured with any videos
with/without ground truth labels. This makes the proposed
approach suitable for the unsupervised (transform) learning
scenarios as well.

Experiments

We confirm the effectiveness of inverse super resolution us-
ing low resolution version (16x12 and 32x24) of three dif-
ferent datasets (HMDB, DogCentric, and JPL-Interaction).

Resized datasets

We selected three public datasets and resized them to obtain
low resolution (e.g., 16x12) videos.

HMDB dataset (Kuehne et al. 2011) is a dataset popu-
larly used for video classification. It is composed of videos
with 51 different action classes, containing ∼7000 videos.
The videos include short clips, mostly from movies, ob-
tained from YouTube. DogCentric dataset (Iwashita et al.
2014) and JPL-Interaction dataset (Ryoo and Matthies 2013)
are the first-person video datasets taken with wearable/robot
cameras. They are smaller scale datasets, having ∼200
videos and ∼10 activity classes. DogCentric activity dataset
is composed of first-person videos taken from a wearable
camera mounted on top of a dog interacting with humans
and surroundings. The dataset contains a significant amount
of ego-motion, and it serves as a benchmark to test whether
an approach is able to capture information in activities
while enduring/capturing strong camera ego-motion. JPL-
Interaction dataset contains human-robot activity videos
taken from a robot’s point-of-view.

We emphasize once more that we made all these videos
in the datasets have significantly lower resolution (Figure 3),
which is a much more challenging setting compared to the
original datasets with their full resolution. Our main video
resolution setting was 16x12, and we also tested the reso-
lution of 32x24. For the resizing, we used the approach of
averaging pixels in the original high-resolution videos that
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Figure 3: The original resolution videos (top) and their
16x12 resized videos (bottom) from the three datasets used.
We can confirm that the videos are properly anonymized
(i.e., we cannot distinguish human faces) by resizing them to
extreme low resolution, but activity recognition from them
is becoming more challenging due to the loss of details.

fall within LR pixel boundaries. A video cropping was used
for the videos with non-4:3 aspect ratio.

Implementation

Feature descriptors/representation: We extracted three
different types of popular video features and tested our in-
verse super resolution with each of them and their combina-
tions. The three features are (i) histogram of oriented gradi-
ents (HOG), (ii) histogram of optical flows (HOF), and (iii)
convolutional neural network (CNN) features. These feature
descriptors were extracted from each frame of the video. In
order to make the CNN handle our low-resolution frames,
we newly designed and utilized a 3-layer network with dense
convolution and minimal pooling, illustrated in Figure 4.
Next, we use Pooled Time Series (PoT) feature represen-
tation (Ryoo, Rothrock, and Matthies 2015) with temporal
pyramids of level 1 or 4 on top of these four descriptors.

Classifier: Standard SVM classifiers with three different
kernels were used: a linear kernel and two non-linear multi-
channel kernels (χ2 and the histogram-intersection kernels).

Baselines: The conventional approach for low resolution ac-
tivity recognition is to simply resize original training videos
to fit the target resolution (Figure 2 (a)). We use this as our
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Figure 4: CNN architecture for extracting 256-D features
from very low resolution images.

Table 1: Performances (%) of different methods tested with
16x12 DogCentric dataset, using three different kernels. n =
16 and PoT level 1 was used with all features. Standard de-
viations were∼ 0.3, and the behaviors were very consistent.

Linear χ2 Histogram
Baseline (PoT) 58.47 63.33 58.98

DA 60.86 63.36 62.08
DA + rotation 60.94 64.17 62.85

Uniform 60.56 63.95 62.29
ISR-method1 61.73 64.85 63.35
ISR-method2 61.96 64.91 63.61

baseline, while making it utilize the identical features and
representation. The parameters were tuned for each system
individually. In addition, we implemented the data augmen-
tation (DA) approach similar to (Karpathy et al. 2014) that
randomly selects LR transformations to increase the number
of training samples. We added random rotation transforma-
tions to the data augmentation as well (DA+rotation), and
also tested the uniform transformation selection strategy.

Evaluation

We conducted experiments with the videos downsampled
to 16x12 (or 32x24) as described above. We followed the
standard evaluation setting for each of the datasets. In the
HMDB experiment, we used the provided 3 training/testing
splits and performed the 51-class classification. In the exper-
iments with the DogCentric dataset, multiple rounds of ran-
dom half-half training/test splits were used to measure the
accuracy. In the case of JPL-Interaction dataset with robot
videos, 12-fold leave-one-set-out cross validation was used.

16x12 DogCentric dataset In this experiment, we used 4
types of features, 3 different types of kernels (i.e., linear, χ2,
and histogram-intersection), and 6 different settings for the
number of LR samples generated per original video (i.e., n).
For each of the settings, five different types of sample gener-
ation methods were tested: data augmentation, data augmen-
tation with rotations, uniform sampling, and our ISR trans-
form learning methods (method1 and method2).

Figure 5 shows the results of our ISR tested with mul-
tiple different features while using a linear kernel, and Ta-
ble 1 shows the results with three different kernels. We
are able to observe that our method1 always performs su-
perior to conventional approaches including data augmen-
tation or uniform transform selection, very reliably. Our
method2 performance was less consistent due to that it only
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DA DA+rotation Uniform ISR-method2ISR-method1 baseline

Figure 5: Experimental results with different features on 16x12 DogCentric dataset. X-axis shows the number of LR samples
obtained using ISR or data augmentation (i.e., n), and Y-axis is the classification accuracy (%). The blue horizontal line in each
plot shows the activity classification performance without ISR. ISR shows a superior performance in all cases.

Table 2: 16x12 DogCentric dataset result comparison: No-
tice that (Wang and Schmid 2013) was not able to extract any
trajectories from 16x12 videos. For the PoT and our ISR, we
are reporting the result with χ2 kernel with PoT level 4.

Approach Resolution Accuracy
Iwashita et al. (2014) 320x240 60.5 %

Wang and Schmid (2013) 320x240 67.6 %
PoT (Ryoo et al. 2015) 320x240 73.0 %
Iwashita et al. (2014) 16x12 46.2 %

Wang and Schmid (2013) 16x12 10.0 %
PoT (HOG + HOF + CNN) 16x12 64.6 %

ISR (n = 16) 16x12 67.4 %

uses information gain instead of taking advantage of sample
ground truth labels when learning transforms. Nevertheless,
method2 showed an overall performance meaningfully su-
perior to the other approaches (e.g., method2 - 62.0 vs. data
augmentation - 60.9 with a linear kernel).

Table 2 compares our approach with other state-of-the-art
approaches. The best performance report on the DogCen-
tric dataset is 73% with 320x240 videos using the PoT fea-
ture representation (Ryoo, Rothrock, and Matthies 2015),
but this method only obtains the accuracy of 64.6% with
16x12 anonymized videos. Our inverse super resolution is
further improving it to 67.4% while using the same features,
representation, and classifier.

Tiny-HMDB dataset: 16x12 and 32x24 Table 3 shows
the results with our ISR-method2. The result clearly sug-
gests that inverse super resolution improves low resolution
video recognition performances in all cases. Even with a
small number of additional ISR samples (e.g., n = 2), the
performance improved by a meaningful amount compared
to the same classifier without inverse super resolution. Nat-
urally, the classification accuracies with 32x24 videos were
higher than those with 16x12. CNN performances were sim-
ilar in both 16x12 and 32x24, since our CNN takes 16x12
resized videos as inputs.

Notice that even with 16x12 downsampled videos, where
visual information is lost and the use of trajectory-based fea-

tures are prohibited, our methods were able to obtain per-
formance superior to several previous methods such as the
standard HOF/HOG classifier (20.0% (Kuehne et al. 2011))
and ActionBank (26.9% (Sadanand and Corso 2012)). That
is, although we are extracting features from 16x12 videos
where a person is sometimes as small as a few pixels, it is
performing superior to certain methods using the original
HR videos (i.e., videos larger than 320x240). The approach
(Wang and Schmid 2013) obtaining state-of-the-art perfor-
mance of 57.2% with 320x240 HR videos got the perfor-
mance of ∼2% in LR videos, since no trajectories could be
extracted from 16x12 or 32x24.

16x12 JPL-Interaction dataset We also conducted ex-
periments with the segmented version of JPL-Interaction
dataset (Ryoo and Matthies 2013), containing robot-centric
videos. Figure 3 (c) shows examples of its 16x12 version,
where we can observe that human faces are anonymized.

Table 4 shows the results. We are able to confirm once
more that the proposed concept of inverse resolution benefits
low resolution video recognition. Surprisingly, probably due
to the fact that each activity in the dataset shows very dis-
tinct appearance/motion different from the others, we were
able to obtain the activity classification accuracy compara-
ble to the state-of-the-arts while only using 16x12 extreme
low resolution videos.

Conclusion

We present an inverse super resolution method for im-
proving classification performance on extreme low resolu-
tion video. We experimentally confirm its effectiveness us-
ing three different public datasets. The overall recognition
was particularly successful with first-person video datasets,
where capturing ego-motion is the most important. Our ap-
proach is also computationally efficient in practice, requir-
ing learning iterations linear in the number of ISR sam-
ples when using our method 2. In contrast, to achieve sim-
ilar performance with traditional data augmentation, an or-
der of magnitude more examples are needed (e.g., n=16 vs.
n=175).
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Table 3: HMDB performances with and without our ISR. Classification accuracies (%) on 16x12 and 32x24 are reported. We
show means and standard deviations of repeated experiments. The best performance per feature is indicated with bold.

Table 4: Recognition performances of our approach tested
with 16x12 resized JPL-Interaction dataset. Although our
result is based on extremely low resolution 16x12 videos,
it obtained comparable performance to the other meth-
ods (Ryoo and Matthies 2013; Wang and Schmid 2013;
Narayan, Kankanhalli, and Ramakrishnan 2014) tested us-
ing much higher resolution 320x240 videos.

Approach Resolution Accuracy
Ryoo and Matthies (2013) 320x240 89.6 %
Wang and Schmid (2013) 320x240 96.1 %

Narayan et al. (2014) 320x240 96.7 %
Ryoo and Matthies (2013) 16x12 74.5 %

PoT 16x12 92.9 %
Ours (PoT + ISR) 16x12 96.4 %

Discussions

One natural question is whether the resolution in our testing
videos is small enough to prevent the human/machine recog-
nition of faces (i.e., whether our videos are really privacy-
preserving videos).

The state-of-the-art low resolution face recognition (i.e.,
face identification) algorithm using convolutional neural
networks (Wang et al. 2016) obtained around 50∼60% ac-
curacy with 16x16 human face images. This 50∼60% clas-
sification accuracy is based on the dataset with 180 subjects,
and the performance is expected to go even lower in real-
world environments with more subjects to be considered for
the classification. On the other hand, in our extreme low res-
olution videos (i.e., 16x12 videos), the resolution of human
face is at most 5x7. In often cases, the face resolution was
as small as 2x2 or even 1x1. This suggests that reliable face
recognition from our extreme low resolution videos will be
difficult for both machines and humans. Furthermore, there
is a user study (Butler et al. 2015) reporting that anonymiz-
ing videos in a way similar to what we have done signifi-
cantly lowers human’s privacy sensitivity.

Another relevant question is whether enhancing the res-
olution of the testing video (i.e., recovering high resolution
images from LR images) is possible with our extreme LR
videos. In order to confirm that such recovery is not possible
due to the information loss, we applied the state-of-the-art
deep learning-based recovery approach (Kim, Lee, and Lee
2016) to the video frames. Figure 6 illustrates the results.
Notice that these images are based on the scale factor of x4.
Any attempt with the higher scale factor gave us worse re-
sults. We observe that this deep learning-based resolution

Figure 6: Example resolution enhancement attempts using
(Kim, Lee, and Lee 2016). We can observe that face details
are not being recovered properly, even after the x4 scale en-
hancement. This is particularly so with our 16x12 videos.

enhancement is not recovering the face details, particularly
in 16x12 videos. The algorithm sharpens the edges com-
pared to bicubic interpolation, but failed to recover actual
details.
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