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Abstract. Obstacle avoidance is an essential capability for micro air
vehicles. Prior approaches have mainly been either purely reactive, map-
ping low-level visual features directly to headings, or deliberative meth-
ods that use onboard 3-D sensors to create a 3-D, voxel-based world
model, then generate 3-D trajectories and check them for potential colli-
sions with the world model. Onboard 3-D sensor suites have had limited
fields of view. We use forward-looking stereo vision and lateral structure
from motion to give a very wide horizontal and vertical field of regard.
We fuse depth maps from these sources in a novel robot-centered, cylin-
drical, inverse range map we call an egocylinder. Configuration space
expansion directly on the egocylinder gives a very compact represen-
tation of visible freespace. This supports very efficient motion planning
and collision-checking with better performance guarantees than standard
reactive methods. We show the feasibility of this approach experimen-
tally in a challenging outdoor environment.

1 Introduction

Micro air vehicles (MAVs) require onboard obstacle detection and avoidance
systems with minimal size, weight, power, complexity, and cost, using sensors
with a very large field of regard for maneuvering in cluttered spaces. Vision-based
approaches have excellent potential to address these needs for many applications.
In prior work [13], we used stereo vision for forward-looking depth perception
and showed that inverse range maps in image space can be used for MAV motion
planning, with configuration space (C-space) obstacle expansion done in image
space, dynamically feasible trajectories generated in 3-D Cartesian space, and
collision-checking done by projecting candidate trajectories into image space to
determine whether they intersect obstacles. This is a very efficient approach to
geometric representation and collision checking, and the overall approach is quite
effective where the goal is obstacle avoidance rather than mapping.

In this paper, we extend the total field of regard to about 180◦ by adding
side-looking cameras with structure from motion (SfM) for depth perception. We
project the depth data from all cameras onto a cylindrical inverse range image we
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call an egocylinder, and perform C-space expansion on the egocylinder. To reduce
the computational cost of motion planning for low-speed flight, we currently use
a simple method to choose directions toward more distant goals that stay within
freespace shown by the egocylinder. This entire architecture is a step toward our
ultimate goal of integrating depth data over time with this data structure and
formulating more sophisticated motion planning algorithms directly in image
space. Experiments in a challenging outdoor environment have demonstrated
the promise of this approach.

2 Related Work

Pros and cons of various passive and active sensor options for MAV obstacle
avoidance were discussed in [10,13]; recent examples of MAV systems using mul-
tiple types of sensors are described in [5,14]. Here we focus on methods that use
vision.

Vision-based approaches break down according to how they do vision, scene
representation, and planning and control. The main approaches to vision use
optical flow, learning, and/or monocular or stereo depth perception. Optical flow
methods typically design reactive control algorithms with optical flow input.
Control algorithms for provably stable wall-following and corridor-following
behavior have been developed this way [11]; however, navigation that requires
a discrete choice among alternate directions requires higher-level perception or
reasoning. Machine learning methods have also been used to map optical flow
and other monocular visual features into reactive obstacle avoidance behaviors
[4], but it is difficult to generalize this approach to work in a wide variety of
conditions, so most work on MAV obstacle detection uses depth perception.
Forward-looking monocular depth perception via structure from motion (SfM)
has been used for MAVs [1,3], but requires aircraft motion to measure depth and
has poor depth perception near the focus of expansion. Stereo vision overcomes
these limitations, works well in many outdoor settings in particular, and small,
fast stereo implementations are progressing [9,12,17].

The predominant approach to scene representation has been to use 2-D or
3-D Cartesian probabilistic grid maps, which can be used with motion plan-
ning algorithms that vary from reactive to deliberative and from local to global
[5,8,17,18]. These methods are particularly useful for mapping, exploration, or
obstacle avoidance in areas that require memory of previously examined avenues;
however, they use a lot of storage and computation, and scaling to high speed
flight requires multiresolution grids.

For obstacle avoidance per se, less expensive representation and planning
algorithms are possible. Often these representations are polar in nature, match-
ing the polar angular resolution of the depth sensors [2,15]. In [16], depth data
from two onboard stereo pairs was fused in a cylindrical inverse range map
centered on the vehicle. This work introduced C-space obstacle expansion of an
image space depth map, though in a limited fashion based on an assumed ground
plane. In [13], we generalized the C-space expansion to be based on the actual



MAV Obstacle Avoidance with an Egocylinder 507

depth at each pixel and developed the first combination of an image space depth
representation with a dynamics-aware motion planner; feasible trajectories were
generated in 3-D and projected into image space to do collision checking by test-
ing for intersections with the C-space expanded depth map. This approach to
obstacle representation and collision checking is fast and showed good potential
in experiments; however, the field of view was limited and the CL-RRT motion
planning algorithm was computationally expensive.

3 Technical Approach

Figure 1 illustrates the sensing, processing, and algorithm architecture of our
approach, which is implemented on an AscTec Pelican quadrotor (Fig. 5). To
minimize the sensor hardware, we augment forward-looking stereo by adding
single cameras aimed 45◦ to each side, giving a total field of regard of about
180◦. Stereo matching is done with local block matching for speed, which works
adequately well in our test environments. To obtain depth perception with the
side-looking cameras, we examined several options for using two-frame optical
flow algorithms, as well as the LSD-SLAM incremental SfM algorithm [6]. LSD-
SLAM constrains optical flow search to epipolar lines computed from estimated
camera motion, and incrementally improves depth resolution by using each new
image to update depth estimates in keyframes. We found this to be much less
noisy than unconstrained optical flow algorithms, so we use this approach. Since
monocular SfM has an unobservable scale factor, we estimate scale by comparing
SfM range measurements with range from stereo in the image overlap areas
between the outer SfM cameras and the stereo cameras.

To provide a unified depth representation, we project the stereo and scaled
SfM depth maps onto a cylinder centered on the aircraft, which is stored as a

Fig. 1. System architecture.
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Fig. 2. Schematic illustration of stereo and SfM depth maps fusion into the egocylinder
representation, and C-space expansion of the egocylinder. Using inverse range, the
expansion widens closer objects more than farther objects.

disparity map where each pixel records the inverse radial distance to the near-
est object in the direction of the pixel (Fig. 2). Currently the egocylinder has
the orientation of the body frame, though it could be aligned with the gravity
vector. C-space expansion is done on this disparity map similarly to [13], which
essentially reduces the range at each pixel and widens objects in the depth map
in proportion to the width and height of the aircraft plus a safety margin. Using
inverse range conveniently gives a finite representation (zero) to objects beyond
the maximum range of the sensors. Quantized inverse range also matches the
range uncertainty characteristics of vision-based depth estimation.

The expanded egocylinder allows the aircraft to be treated as a point for
collision checking. In this paper, we evaluate the innovations in the perception
and representation system with a simple, fast avoidance algorithm that is safe
if there are no major perceptual errors. At the obstacle densities and velocities
considered here, we employ a reduced dynamical model in which the vehicle
can turn with infinite agility but requires a finite distance to come to a stop.
Accordingly, we restrict the set of possible vehicle trajectories at any instant
to the set of straight lines extending radially from the vehicle. Collision-free
trajectories are then extracted from this set by transforming the vehicle velocity
into an inverse-range safety horizon that is based on the time required to come
to a complete stop. After first checking the goal direction in order to avoid a
search if possible, the entire planning horizon is checked against the egocylinder
to eliminate flight directions that violate the safety horizon constraint. A simple
scan of the remaining pixels then returns the collision-free direction that is closest
to the goal direction (Fig. 3).
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Fig. 3. Motion planning schematic and simulation. Left: selected flight direction to
avoid obstacle. Right: simulated flights through cluttered environments without cul-
de-sacs were successful up to speeds over 15 m/s (top view).

To maximize safety and visibility of the scene ahead, a low-level controller
executes the command by yawing the cameras towards the requested direc-
tion while separate PID loops maintain forward velocity and eliminate side slip
around the turn. We have also implemented a simple temporal filtering feature
that provides robustness against noisy or missing depth data — once a point
on the planning horizon is chosen, it is propagated forward with the motion of
vehicle for a few cycles and assigned a preference over the egospace pixel scan.
In addition to reducing latency by allowing the planning pipeline to be bypassed
most of the time, this memory feature tends to smooth out the flight of the
vehicle through complicated or noisy environments, in which the target would
otherwise change frequently, and prevents dropped frames or other gaps in visual
input from ending a flight. This entire planning approach is very fast, safe, and
allows us to focus on evaluating perception at the cost of sacrificing algorithmic
completeness and strict satisfaction of the full vehicle dynamics. Ongoing work
will employ a more sophisticated image space motion planning algorithm that
can accommodate these issues.

Figure 1 shows how all parts of the algorithm mapped onto our three-level
processor architecture. Images are processed at 384×240 pixel resolution. Stereo
runs at 5 fps, LSD-SLAM at 10 fps, and the egocylinder and motion plan are
updated at the stereo frame rate of 5 fps. Planning itself takes under a millisecond
to verify that the current direction is still safe, and a few milliseconds if it is
necessary to search for a new direction. Visual-inertial state estimation is done
with a nadir-pointed camera using methods from [19].

Operating outdoors in areas with bright sunlight and deep shadow is difficult,
because it creates very large intra-scene (within the same image) and inter-scene
(between successive images) illumination variations that greatly exceed the lin-
ear dynamic range of available cameras. This has been especially problematic in
experiments we have conducted in a grove of trees (see Sect. 4) using a nadir-
pointed camera for state estimation. The most effective way to address this is to
improve dynamic range at the sensor level. There are multiple potential ways to
do this. Some approaches acquire multiple images separated in time and com-
bine these in software; this is impractical on a moving robot. Another approach
uses hardware design in the imager that provides a multi-linear exposure mode
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that approximates a logarithmic image response. This mode is implemented in
the Matrix Vision mvBlueFOX-200w CMOS cameras we use and can extend
the total dynamic range from 55 dB to 110 dB. These cameras have three linear
segments in their photometric response function, where the slope and transi-
tion point of the second and third segments is controlled by a two sets of knee
point parameters. Creating a good exposure for given scene conditions requires
choosing the total exposure time and setting appropriate knee point parameters.

Fig. 4. Non-HDR (left) and HDR (right) images in a forest scene. Large areas are
saturated or under-exposed in the non-HDR image. The HDR image has a better
distribution of intensity values, which leads to better performance of vision algorithms.

We have taken a first step toward exploiting this multi-linear HDR mode
in the following camera initialization procedure, which is run once at the start
of an experiment (Fig. 4). First, we acquire a series of images while adjusting
exposure time via gradient descent to push the average intensity of the image
stream towards a target intensity in the middle of the pixel brightness range.
Next, we fix the total exposure time while seeking the parameters of each knee
point that maximize image entropy. In an iterative process, each knee point is set
sequentially to maximize local entropy. This does not simultaneously optimize
the setting of both knee points, but it avoids extra parameters and has shown
to improve feature tracking performance. Once the exposure parameters are
initialized, they are fixed for the duration of the flight, which has been adequate
in our test conditions to date. Ideally, exposure should be optimized on every
frame; however, our current optimization procedure is too slow for that and
large changes of exposure have potential to require changes to feature tracking
algorithms to maintain landmark tracking across exposure discontinuities. The
latter issue was out of scope for this paper.

4 Results

We have conducted low-speed (< 1 m/s) experimental trials in a grove of trees
that provided a relatively high obstacle frequency (Fig. 5). Flights totaled over
500 meters in aggregate length, during which 65 trees were encountered. This
area had very difficult illumination conditions due to the combination of brightly
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sunlit and deeply shadowed areas in the same image. Figure 6 shows results of
the vision pipeline at several points during such a run, as well as a 2-D map
produced after the fact from data logs.

Fig. 5. Left: Grove of trees test area; Right: AscTec Pelican with 4 camera head.

The saturated and underexposed areas of the images in Fig. 4 illustrate the
dynamic range problem with these illumination conditions. While the C-space
expansion effectively fills in many areas that have missing data in depth maps
from stereo and SfM, this forest environment was particularly challenging for the
visual-inertial state estimation system. Therefore, we focused HDR experiments
on the state estimation camera, where use of the HDR mode improved the aver-
age percentage of map landmarks that could be matched in each frame from 61%
to 79%. Nevertheless, the floor of the forest had many very small, self-similar
features, and doing state estimation with a nadir-pointed camera while flying
low (< 2 m above the ground) in this environment still made state estimation
by far the weakest link in the system.

The detection and evasion portions of the architecture were very reliable in
the performance evaluation experiments, which were analyzed quantitatively by
noting the frequency and cause of any human intervention required to avoid a
collision. These modules were responsible for only a single intervention event
during the 521 m recorded, which resulted in successful avoidance of 64 out
of 65 trees for an success rate of 98%. The intervention was attributed to a
missed detection in which the vehicle had drifted too close to an obstacle and
could no longer detect it using stereo matching. LSD-SLAM failed to adequately
track features about 25% of the time; with data logging, the LSD-SLAM frame
rate dropped to about 8 Hz, which is too slow for this algorithm to be reliable.
However, this did not impact overall obstacle avoidance performance, because
the control policy of first turning the stereo cameras towards the flight direction,
and incorporating a small amount of path hysteresis, provided a high degree of
robustness to missed left or right camera LSD-SLAM depth maps, which were
seamlessly reacquired beginning on the next frame.
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Fig. 6. Results of a 20 m experimental flight through a grove of trees. Top: the results
of the perception system for three different locations on the run, showing the left
rectified stereo image, the fused egocylinder, and the C-space expanded egocylinder
with selected direction of flight (red crosses). This only shows the central 180◦ of the
egocylinder. Bottom: a top down 2-D plot of the trajectory and nearby obstacle pixels
from the egocylinder over the whole run. Arrows and numbers on the trajectory show
where the three images above were acquired. Vehicle speed was 1 m/s throughout.

5 Main Experimental Insights

Using C-space expansion of image space depth maps for collision checking is a
very new approach to obstacle avoidance for MAVs. In our experiments to date,
obstacle avoidance has been quite successful; in 521 m of flight in challenging
conditions, only one intervention was needed in 65 encounters with obstacles,
and no problems with false alarms in freespace were apparent. This is signif-
icant, since the approach so far does not include explicit temporal fusion for
false alarm suppression or filling in missing data, unlike approaches based on
voxel maps. Nevertheless, work is in progress to add temporal fusion to image
space representations to address the finite probability that these problems will
eventually occur.
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By far the biggest performance problem in this system is with visual state
estimation. Using a nadir pointed camera while flying low (< 2 m above ground)
in a scene with a very high dynamic range of illumination and many small,
self-similar features (leaves) on the forest floor seems to be at the heart of the
problem. We plan to address this in several ways in ongoing work, including
using visual feature tracking in the forward and sideward looking cameras. LSD-
SLAM was successful as a source of side-looking depth data, but it requires
a high frame rate (>10 Hz) and accurate calibration of camera extrinsics to
maintain its usefulness for obstacle detection, both of which were problematic
in this implementation. Side-looking stereo cameras might be easier to use, but
would lack the potential of exploiting increasing motion baselines to improve
depth resolution that exists with recursive approaches to structure from motion.
Ultimately, combining both may be a good approach, as is explored in a recent
stereo extension of LSD-SLAM [7].

The disparity-space reactive planner extends the advantages of the C-space
expansion method and egocylinder to the planning regime — potential trajecto-
ries are selected and executed in a highly economical fashion by employing the
same framework that allows the egocylinder to represent obstacles compactly and
efficiently. Overall, this choice of representation demonstrates decreased planning
latency and complexity compared to world-coordinate methods.

There is a close connection between vehicle velocity, uncertainty in the range
data, and successful obstacle avoidance — this has not emerged as an issue for
the slow speeds of our experiments so far, but for reliable obstacle detection to
scale to high speeds, this interplay will require further study. Several approaches
may improve the maximum range and range resolution of the system to support
higher velocities, including the use of higher resolution imagery and potentially
the use of temporal fusion of depth maps for improved range resolution. Scenes
involving moving obstacles will require extensions of both the perception and
the planning elements of this system.
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