
Carnegie Mellon University
Research Showcase @ CMU

Computer Science Department School of Computer Science

10-2006

Scheduling with Uncertain Resources:
Collaboration with the User
Eugene Fink
Carnegie Mellon University

Ulas Bardak
Carnegie Mellon University

Brandon Rothrock
Carnegie Mellon University

Jaime G. Carbonell
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/compsci

This Conference Proceeding is brought to you for free and open access by the School of Computer Science at Research Showcase @ CMU. It has been
accepted for inclusion in Computer Science Department by an authorized administrator of Research Showcase @ CMU. For more information, please
contact research-showcase@andrew.cmu.edu.

Published In
Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, 11-17.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fcompsci%2F296&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F296&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fcompsci%2F296&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F296&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

Abstract—We describe a scheduling system that supports
collaboration between the user and automated optimizer.
It enables the user to monitor the optimizer decisions,
make any of the decisions manually, and leave the other
decisions to the system. Furthermore, it identifies the
tasks that require the user’s participation, and asks for
assistance with these tasks.

I. INTRODUCTION
HEN we work on a practical scheduling task, we often
encounter unexpected changes in resources and
constraints. For example, when scheduling conference

presentations, we may find out that some reserved rooms are
no longer available, or that some speakers have unexpected
equipment needs. If these changes are significant, we may
face a “crisis” situation, which requires major changes to the
schedule. Furthermore, we may have to handle a continuous
stream of unexpected changes, which cause multiple
adjustments to the schedule before and during the conference.
This need for repairing schedules in crisis situations gives rise
to several related problems, including representation of
uncertain knowledge, efficient automatic repairs, and support
for user participation in the rescheduling process.

Although researches have long realized the importance of
uncertain information in optimization problems, the related
work has been limited [Chen and Pu, 2004]. For example,
several researchers have built systems that ask the user to
provide all missing data relevant to the task, and support only
qualitative reasoning about uncertainty [Stolze and Rjaibi,
2001; Stolze and Ströbel, 2003; Faltings et al., 2004;
McCarthy et al., 2005]. This approach is effective when a
problem includes only a few uncertain facts, but it is
impractical for a large number of uncertain variables.

Researchers have also studied techniques for collaboration
between AI systems and users [Fleming and Cohen, 2001;
Akiyoshi et al., 2002], including collaborative scheduling
[Anderson et al., 2000; Ho and Lu, 2005] and planning [Allen
and Ferguson, 2002; Cox and Zhang, 2005; Ai-Chang et al.,
2004]. They have focused on domain-specific algorithms,

The manuscript was received on March 30, 2006. The described work was
supported by the Defense Advanced Research Projects Agency (DARPA)
under Contract No. NBCHD030010.

and they have not developed techniques for general
scheduling under uncertainty.

The work on graphical interfaces for collaboration between
the user and automated agents has also been limited
[Shneiderman and Maes, 1997]. For example, Beard et
al. [1990], Mackinlay et al. [1994], and Faulring and
Myers [2005] have developed systems for visualization and
editing of complex schedules, which allow post-editing of
automatically constructed schedules; however, they do not
support interactive use of scheduling procedures.
 We have explored the problem of repairing schedules in
crisis situations, and built a system that helps a human
manager to address sudden changes in available resources
and scheduling requirements. It includes a mechanism for
representing unexpected changes and related uncertainty.
Furthermore, it enables the user to participate in the
scheduling process, and to build a new schedule in
collaboration with the system. When the user needs help, she
invokes the automated scheduler; when the scheduler needs
help, it asks the user for additional information or guidance.
This approach allows the user to make high-level decisions
and leave low-level optimization to the system.

The developed system is part of the RADAR project
(www.radar.cs.cmu.edu) at Carnegie Mellon University,
which is aimed at building an artificial-intelligence
architecture for assisting an office manager. We have
described this system in a series of four papers, including this
paper. In the other three papers, we have explained the
representation of uncertainty [Bardak et al., 2006a], search
for near-optimal schedules [Fink et al., 2006], and automated
elicitation of additional data that help to reduce uncertainty
[Bardak et al., 2006b].

We now describe the collaboration between the system and
human user. We first give an example of a scheduling
scenario (Section II) and explain the encoding of available
resources and scheduling constraints (Section III). We then
present the architecture of the developed system (Section IV)
and functionality of its main components (Sections V–VII).

Scheduling with Uncertain Resources:
Collaboration with the User

Eugene Fink
e.fink@cs.cmu.edu

Ulas Bardak
cyprus@cs.cmu.edu

Brandon Rothrock
rothrock@cs.cmu.edu

Jaime G. Carbonell
jgc@cs.cmu.edu

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

W

II. SCHEDULING PROBLEM
We begin with an example of a conference scenario, and use
it to illustrate the representation of resources and constraints.
Suppose that we need to assign rooms to events at a small
one-day conference, which starts at 11:00am and ends at
4:30pm, and that we can use three rooms: auditorium,
classroom, and conference room (Table 1). These rooms host
other events on the same day, and they are available for the
conference only at the following times:

 Auditorium: 11:00am–1:30pm and 3:30pm–4:30pm.
 Classroom: 11:00am–2:30pm.
 Conference room: 12:00pm–4:30pm.

 We describe each room by a set of properties; in this
example, we consider three properties:

Size: Room area in square feet.
Mikes: Number of microphones.
Stations: Maximal number of demo stations

that can be set up in the room.

The conference includes five events: demonstration,
discussion, tutorial, workshop, and committee meeting
(Table 2). For each event, we specify its importance, as well
as related constraints and preferences. We define constraints
by limiting appropriate start times, durations, and room
properties. For example, we may indicate that an acceptable
start time for the committee meeting is 3:00pm or later, an
acceptable duration is 30 minutes or more, and an acceptable
room size is 400 square feet or more. We may also select
preferred values for start times, durations, and room
properties, which are subsets of acceptable values. For
example, we may specify that the preferred start time for the
committee meeting is 3:30pm, preferred duration is 60
minutes, and preferred room size is 800 square feet or more.
In Table 2, we give constraints and preferences for all events.

We construct a conference schedule by assigning a room
and time slot to every event. For instance, the schedule in
Figure 1 satisfies all constraints and most preferences given
in Table 2. The only unsatisfied preferences are the room
sizes for the discussion and workshop, and the number of
microphones for the discussion and tutorial.

III. RESOURCES AND CONSTRAINTS
We now explain the representation of available resources,
scheduling requirements, and specific schedules, and then
describe the utility function used in evaluation of schedules.
The representation described here is a sublanguage of the full
representation used in the developed system; the full
language is presented in another paper [Bardak et al., 2006a].

Rooms: We represent resources by a set of available
rooms; the description of a room includes its name and a list
of numeric properties (see Table 1). The user can define an
arbitrary list of properties, and then specify their values for
each room. The user can also specify the availability of each
room, represented by a collection of time intervals. For
instance, the auditorium in the motivating example is
available for 11am–1:30pm and 3:30pm–4:30pm.

Events: The description of an event includes its name,
importance, and related constraints and preferences (see
Table 2). The importance is a positive integer, the constraints
are sets of acceptable values for start time, duration, and room
properties, and the preferences are sets of preferred values.

 Auditorium Classroom Conf. room
Size 1200 700 500
Stations 10 5 5
Mikes 5 1 2

Table 1. Available rooms and their properties.

 Demo Discu-
ssion

Tuto-
rial

Com-
mittee

Work-
shop

Importance 5 3 8 1 5
Acceptable 11am ≥3pmStart

time Preferred Any Any 11am 3:30pm Any

Acceptable ≥60 ≥30 ≥30 ≥30 ≥60Dura-
tion Preferred 150 90 60 60 120

Acceptable ≥600 ≥200 ≥400 ≥400 ≥600Room
size Preferred ≥1200 ≥600 ≥600 ≥800 ≥1000

Acceptable ≥5 Any Stat-
ions Preferred ≥10 Any ≥2 Any Any

Acceptable ≥2 ≥1 ≥1Mikes Preferred Any ≥4 ≥2 Any ≥1
Table 2. Conference events and related constraints and preferences.

 Auditorium Classroom Conf. room

11:00
11:30 Tutorial Unavailable

12:00
12:30

1:00

Demo

1:30
2:00

Workshop

2:30

3:00

Unavailable

3:30
4:00

Committee
meeting

Unavailable Discussion

Figure 1. Schedule for the conference scenario in Tables 1 and 2.

Figure 2. Reward for satisfying a preference. If the related property
value is within the preferred set, the reward is 1.0; else, it linearly
decreases with the distance from the set.

property
value

preferred values

acceptable values

0

1

reward

Uncertainty: When scheduling a conference, we may
have incomplete information about resources, event
importances, constraints, and preferences; for instance, we
may not know the exact size of the conference room or the
exact requirement for the demo duration. We represent an
uncertain value as an interval, encoded by its minimal and
maximal values, and we assume that all values in this interval
are equally likely. For example, we may specify that the size
of the conference room is between 500 and 750, the
importance of the demo is between 4 and 6, and its minimal
acceptable duration is between 60 and 90.

Schedule: To build a schedule, the system assigns a
specific room and time slot to each event. It represents this
assignment by four variables: event name, room name, start
time, and duration. Alternatively, it can decide that an event is
not part of the schedule, which is also considered an
assignment. We call such an event rejected, and represent it
by setting its room to NIL. Note that assignments must not
overlap, that is, the system cannot assign two events to the
same room at the same time.

Schedule quality: We measure quality on the scale from
0.0 to 1.0; higher values correspond to better schedules. The
quality of a specific assignment depends on how well the
selected room and time slot match the related constraints and
preferences. If the start time, duration, or some room property
is outside the acceptable set, then the assignment quality is
zero regardless of the other constraints. For example, if we
allocate a 30-minute slot for the demo in the motivating
example, then the assignment quality is zero, even if it
satisfies all other constraints. If we reject an event, the
assignment quality is also zero.

If an assignment satisfies all hard constraints, we determine
the rewards for satisfying the related preferences. If a start
time, duration, or room property is within the preferred set of
values, the respective reward is 1.0. If it is outside the
preferred set, the reward depends on its distance from this set;
specifically, the reward linearly decreases with the distance
from the preferred values, as shown in Figure 2. If the event
has k preferences, and the respective rewards are r1,…, rk,
then the assignment quality is (r1 + … + rk) / k.

The overall schedule quality is the weighted sum of the
quality values for individual assignments. That is, if a
schedule includes n events, the quality values of their
assignments are Qual1,…, Qualn, and their importances are
imp1,…, impn, then the overall schedule quality is

(imp1 · Qual1 + … + impn · Qualn) / (imp1 + … + impn).

 For example, if we use the preferences in Table 2, and the
schedule is as shown in Figure 1, then the quality of the time
slot for the demo is 1.0, for the discussion is 0.75, for the
tutorial is 0.8, for the committee meeting is 1.0, and for the
workshop is 0.85, and the overall schedule quality is 0.86.
 Expected quality: If the description of rooms and events
includes uncertainty, we evaluate candidate schedules by the
mathematical expectation of their quality [Bardak et al.,
2006a]. The system determines the expected quality of
individual assignments, E(Qual1),…, E(Qualn), as well as the
expected values of their importances, E(imp1),…, E(impn),

and uses them to compute the expected quality of the overall
schedule, which is

(E(imp1) · E(Qual1) + … + E(impn) · E(Qualn)) /
(E(imp1) + … + E(impn)).

The quality computation is based on the assumption that
the uncertain values are uniformly distributed in their
respective intervals, and that these distributions are
independent. If the uncertain values do not satisfy these two
assumptions, the computation does not give the exact
expected quality, but it usually provides a good
approximation.

IV. ARCHITECTURE
The scheduling architecture consists of the components
shown in Figure 3. We briefly describe the role of these
components; then, in Sections V–VII, we explain how they
support the collaboration with the user. We have given a more
detailed description of these components in the papers on the
representation of uncertainty [Bardak et al., 2006a],
scheduling based on uncertain knowledge [Fink et al., 2006],
and elicitation of additional data [Bardak et al., 2006b].

World model [Bardak et al., 2006a]: This component
maintains the description of a scheduling scenario, which
includes the information about resources, constraints, and
current schedule. It keeps a persistent copy of the world
model on disk, and a fast-access copy in memory.
 Scorer [Bardak et al., 2006a]: The scoring module is a
fast procedure for evaluating schedule quality, which
computes the expected quality of each assignment. The
system uses it for automatic scheduling and for feedback
during manual scheduling.

Scheduler [Fink et al., 2006]: The scheduling module
inputs the description of rooms and events, and searches for a
schedule with a high expected quality. The search algorithm
is based on hill-climbing; it does not guarantee optimality, but
is usually finds near-optimal solutions. If we apply this
algorithm to construct a new schedule, it begins with the
initially empty schedule and gradually improves it. If we use
it to repair a schedule after changing resources or constraints,
it starts with the old schedule. At each step, it either assigns a
slot to some unscheduled event, or moves some scheduled
event to a better slot. It continues the search until it cannot
find further improvements, or until reaching a time limit.

Elicitor [Bardak et al., 2006b]: The elicitation module
determines whether the scheduler needs manual help, and
generates respective requests to the user. We list the request
types and give example requests in Figure 4.
 If more accurate information about some uncertain value
may help to improve the schedule, the system asks the user to
find out this information. If the constraints for some event
include a lot of uncertainty, the system asks the user to
schedule this event manually, which is usually easier than
providing all related constraints.
 For each potential request, the elicitor analyzes the
expected schedule improvement due to the user’s help, and
the expected human effort of addressing this request; it

evaluates the utility of a request by the difference between the
expected improvement and the required effort. The system
selects the requests with positive utility, ranks them from the
highest to the lowest utility, and displays them in this order.
 Top-level control: This module coordinates the
invocation of the other modules, and it also routes data among
them. Currently, it uses simple control procedures; we are
now working on a more intelligent version, which will
include heuristics and learning mechanisms for making the
best use of the search algorithm, and for improving its
co-ordination with the manual scheduling.

Interface: The graphical user interface consists of three
main screens, as shown in Figure 3. The first screen is for
editing the description of rooms and events (Section V), the
second is for constructing and repairing conference schedules
(Section VI), and the third is for keeping track of the requests
generated by the elicitor (Section VII).

V. EDITING RESOURCES AND CONSTRAINTS
The first screen is for modifying the description of available
resources and scheduling constraints; it supports the eight
types of modifications summarized in Figure 5. We show the
sub-screen for editing resources in Figure 7(a), and the
sub-screen for constraints and preferences in Figure 7(b).
 The user needs to update the world model when she learns
about unexpected changes. For instance, if the conference
room in the motivating example suddenly becomes
unavailable because of unexpected repairs, the user must
either completely delete it or mark the repair period as
unavailable. As another example, if the conference committee
decides to move the demo to the afternoon, the user has to
adjust its set of acceptable times.
 The user may also update the world model when she finds
out more details about rooms or constraints. For instance,
suppose that the conference-room size is uncertain, and the
user needs its exact value for constructing a schedule. Then,
she may measure the size of this room and input its value.
 When the user updates the world model, she needs to make
related modifications to the schedule. She may use the system
to repair the schedule automatically; alternatively, she can
build a new schedule herself in collaboration with the system.

VI. COLLABORATIVE SCHEDULING
The scheduling screen is the central part of the interface (see
Figure 8); it allows the user to invoke the automated
scheduler, guide its search, and make manual modifications.

Available information: The scheduling screen provides
all data about rooms and events; it allows the user to view the
properties and availability of every room, importances of
events, and constraints and preferences for each event. It also
provides a graphical view of the schedule, and shows the
reward for each preference, the quality of each assignment,
and the overall schedule quality.

Figure 3. Architecture of the scheduling system.

• Provide the exact value for an uncertain room property.
Example: Find out the size of the conference room.

• Provide the exact value for an uncertain event importance.
Example: Find out the importance of the demo.

• Provide the exact specification for a set of acceptable values for
start time, duration, or room property in an event description.
Example: Find out the acceptable duration of the demo.

• Provide the exact specification for a set of preferred values for
start time, duration, or room property in an event description.
Example: Find out the preferred room size for the discussion.

• Select a room and time for an event.
Example: Select a time slot for the workshop.

Figure 4. Types of requests to the user. The system may ask the user
to find out more information about available resources and
scheduling constraints, and to schedule some events manually.

• Add a new room and specify its properties and availability.
• Delete an old room.
• Change properties of a room.
• Change the availability of a room.
• Add a new conference event and specify acceptable and preferred

values for its start time, duration, and room properties.
• Delete an old event.
• Modify sets of acceptable values for an event.
• Modify sets of preferred values for an event.

Figure 5. Interface operations for editing resources and constrains.

Figure 6. Main steps of the collaborative scheduling.

Top-level control

World model Scorer Scheduler Elicitor

Editing resources
and constraints

Collaborative
scheduling

Elicitation
requests

Graphical user interface

Process new data
and advice

Manual operations:
• Edit resources and constraints
• Modify the schedule
• Provide advice to the system

Update the
schedule

Generate requests
to the user

Automatic operations

invoke the
auto scheduling

return the control
to the user

(a) Input of room properties.

(b) Input of event constraints and preferences.

Figure 7. Screen for editing resources and constraints.

Figure 8. Screen for collaborative scheduling.

Manual scheduling: The user can construct or modify a

schedule by dragging conference events to appropriate time
slots in the graphical view. She can also remove some events
from the schedule by dragging them into the bin of rejected
events. The system continuously recomputes the expected
quality of the schedule, and shows the impact of each manual
change on the quality of each assignment.

Automated scheduling: The user may invoke the search
procedure that automatically improves the schedule, and she
may interleave manual and automated scheduling. For
instance, she can call the procedure to build an initial
schedule, then make manual modifications, and then call it
again to improve the schedule.

When the user invokes the scheduler, she can provide
several types of restrictions on the search process. First, she
can mark the rooms that should be used for the conference,
and then the system will place events only into these rooms.
For example, she may specify that the system should use only
the auditorium and classroom.

Second, she can “lock” some events in their current
locations, and then the system will not move these events. For

instance, she may specify that the demo and tutorial should be
scheduled as shown in Figure 1, but the system can move the
other three events.

Third, the user can lock a room selected for an event
without locking time; for example, she may specify that the
demo must remain in the auditorium, but the system can
change its start time and duration. Alternatively, the user can
lock the start time of an event without restricting its location;
for instance, she may indicate that the tutorial has to start at
11am, but the system can move it to another room.

Auxiliary operations: The interface also provides several
auxiliary operations, which include saving the current
schedule in a file, reading a previously saved schedule,
undoing and redoing recent changes, and customizing the
view of the schedule.

VII. ELICITATION REQUESTS
The elicitation screen shows the requests for manual help,
sorted in the decreasing order of their utility. It allows the
user to change request priorities, mark the completed
requests, and delete the requests that she does not plan to
address.
 The display of requests includes links to the related parts of
the other screens; for example, a request to find out the exact
value of a room property has a link to this property on the
room-editing screen, and a request to select a time slot for an
event has a link to this event on the scheduling screen.
 Note that the system does not expect the user to provide all
requested help. The user may address some requests and
delay or ignore the others, and the system constructs the
schedule based on the resulting information. If the user later
addresses other requests, the system updates the schedule to
account for the additional information.

VIII. CONCLUSIONS
We have described a system that helps a human manager to
construct a conference schedule in a crisis situation, which
may involve major unexpected changes, as well as
incomplete information about resources and scheduling
requirements. It allows the user to participate in the
scheduling process; that is, the user can monitor the system’s
decisions, make any of the decisions manually, and leave the
other decisions to the system. Furthermore, the system
identifies the tasks that require manual help, and asks for
assistance with these tasks.
 In Figure 6, we summarize the steps of the collaborative
scheduling process. When the user invokes the scheduling
procedure, it processes the new data and advice, modifies the
schedule based on these data, and generates requests to the
user. It then returns the control to the user, who can update
resources and constraints, modify the schedule, address the
system's requests, and provide additional advice.

Although we have considered a scheduling problem, the
underlying framework does not rely on specific features of
this problem, and it is applicable to a variety of optimization
tasks.
 The developed system has two main limitations. First, the
system does not provide explanation of its scheduling
decisions, which reduces the effectiveness of its collaboration
with the user. Second, the elicitation is limited to the five
types of requests in Figure 4; the system does not consider
other types of user help, such as obtaining additional
resources, requesting the conference organizers to relax
constraints, or anticipating possible future changes. We plan
to develop an extended version of the system, which will
include an explanation mechanism and a new module for
negotiating additional resources and constraint changes.

ACKNOWLEDGMENTS
We are grateful to Brad A. Myers and Andrew Faulring for
their help in developing the graphical user interface. We
thank Konstantin Salomatin, P. Matthew Jennings, Chris P.
Martens, Jason Knichel, and Vijay Prakash for their work on
testing and evaluating the scheduling system. We also thank
Aaron Steinfeld and Matt Lahut for their help in applying the
system to real-world scheduling problems.

REFERENCES
[Ai-Chang et al., 2004] Mitchell Ai-Chang, John L. Bresina,

Leonard Charest, Adam Chase, Jennifer Cheng-jung Hsu,
Ari K. Jonsson, Bob Kanefsky, Paul H. Morris, Kanna
Rajan, Jeffrey Yglesias, Brian G. Chafin, William C.
Dias, and Pierre F. Maldague. MAPGEN: Mixed-initiative
planning and scheduling for the Mars Exploration Rover
mission. IEEE Intelligent Systems, 19(1), pages 8–12,
2004.

[Akiyoshi et al., 2002] Masanori Akiyoshi, Teruhiko
Teraoka, Yoshio Ichida, and Takayuki Yamaoka.
Mixed-initiative on human-agent interaction. In
Proceedings of the Forty-First SICE Annual Conference,
volume 3, pages 1657–1661, 2002.

[Allen and Ferguson, 2002] James Allen and George
Ferguson. Human-machine collaborative planning. In
Proceedings of the Third International NASA Workshop on
Planning and Scheduling for Space, 2002.

[Anderson et al., 2000] David Anderson, Emily Anderson,
Neal Lesh, Joe Marks, Brian Mirtich, David Ratajczak,
and Kathy Ryall. Human-guided simple search. In
Proceedings of the Seventeenth National Conference on
Artificial Intelligence, pages 209–216, 2000.

[Bardak et al., 2006a] Ulas Bardak, Eugene Fink, and Jaime
G. Carbonell. Scheduling with uncertain resources:
Representation and utility function. In Proceedings of the
IEEE International Conference on Systems, Man, and
Cybernetics, 2006.

[Bardak et al., 2006b] Ulas Bardak, Eugene Fink, Chris R.
Martens, and Jaime G. Carbonell. Scheduling with
uncertain resources: Elicitation of additional data. In
Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, 2006.

[Beard et al., 1990] David Beard, Murugappan Palaniappan,
Alan Humm, David Banks, Anil Nair, and Yen-Ping
Shan. A visual calendar for scheduling group meetings. In
Proceedings of the Third Conference on Computer
Supported Cooperative Work, pages 279–290, 1990.

[Chen and Pu, 2004] Li Chen and Pearl Pu. Survey of
preference elicitation methods. In Technical Report
IC/200467, pages 1−23. Swiss Federal Institute of
Technology in Lausanne, 2004.

[Cox and Zhang, 2005] Michael T. Cox and Chen Zhang.
Planning as mixed-initiative goal manipulation. In
Proceedings of the Fifteenth International Conference on
Automated Planning and Scheduling, pages 282–291,
2005.

[Faltings et al., 2004] Boi Faltings, Pearl Pu, Marc Torrens,
and Paolo Viappiani. Designing example-critiquing
interaction. In Proceedings of the Ninth International
Conference on Intelligent User Interfaces, pages 22−29,
2004.

[Faulring and Myers, 2005] Andrew Faulring and Brad A.
Myers. Enabling rich human-agent interaction for a
calendar scheduling agents. In Proceedings of the 2005
Conference on Human Factors in Computing Systems,
pages 1367–1370, 2005.

[Fleming and Cohen, 2001] Michael Fleming and Robin
Cohen. A user modeling approach to determining system
initiative in mixed-initiative AI systems. In Proceedings of
the Eighth International Conference on User Modeling,
pages 54–63, 2001.

[Fink et al., 2006] Eugene Fink, P. Matthew Jennings, Ulas
Bardak, Jean Oh, Stephen F. Smith, and Jaime G.
Carbonell. Scheduling with uncertain resources: Search
for a near-optimal solution. In Proceedings of the IEEE
International Conference on Systems, Man, and
Cybernetics, 2006.

[Ho and Lu, 2005] Ken Ka Lun Ho and Meiliu Lu.
Web-based expert system for class schedule planning
using JESS. In Proceedings of the 2005 IEEE International
Conference on Information Reuse and Integration, pages
166–171, 2005.

[Mackinlay et al., 1994] Jock D. Mackinlay, George G.
Robertson, and Robert DeLine. Developing calendar
visualizers for the information visualizer. In Proceedings
of the Seventh ACM Symposium on User Interface
Software and Technology, pages 109–118, 1994.

[McCarthy et al., 2005] Kevin McCarthy, James Reilly,
Lorraine McGinty, and Barry Smyth. Experiments in
dynamic critiquing. In Proceedings of the Tenth
International Conference on Intelligent User Interfaces,
pages 175−182, 2005.

[Shneiderman and Maes, 1997] Ben Shneiderman and Pattie
Maes. Direct manipulation versus interface agents.
Interactions, 4(6), pages 42–61, 1997.

[Stolze and Rjaibi, 2001] Markus Stolze and Walid Rjaibi.
Towards scalable scoring for preference-based item
recommendation. IEEE Data Engineering Bulletin, 24(3),
pages 42−49, 2001.

[Stolze and Ströbel, 2003] Markus Stolze and Michael
Ströbel. Dealing with learning in eCommerce product
navigation and decision support: The Teaching Salesman
Problem. In Proceedings of the Second Interdisciplinary
World Congress on Mass Customization and
Personalization, 2003.

	Carnegie Mellon University
	Research Showcase @ CMU
	10-2006

	Scheduling with Uncertain Resources: Collaboration with the User
	Eugene Fink
	Ulas Bardak
	Brandon Rothrock
	Jaime G. Carbonell
	Published In

	Microsoft Word - main.doc

