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A B S T R A C T

Planetary exploration is full of challenges. Data bandwidth is very limited between planetary rovers and ground-
based data system. What’s worse, even though NASA has accumulated over 34 million images from various
missions, it requires significant effort and is hardly possible for any scientist to go through all of them. In order to
improve the degree of automation and the efficiency of these processes, we propose a system leveraging machine
learning for planetary rovers to actively look for scientifically interesting and valuable features according to text
instructions from scientists and prioritize the images captured onboard with those features for downlink. Such an
image prioritization mechanism can also be naturally applied to content-based image search through text
description in any local planetary image data server, allowing scientists to search for images with desired features
without going through them one by one. Besides theoretical and engineering details of our proposed approach, we
also present both quantitative and qualitative evaluation of the system along with some concrete examples.
1. Introduction

Over the last few decades, NASA has acquired an enormous amount of
image data. More than 34million images are made available to the public
through NASA’s Planetary Data System (PDS), of which over 25 million
are from various Mars missions, including Spirit (MER-A), Oppotunity
(MER-B) and Curiosity (MSL). The number continues to grow due to
ongoing missions, where more than 200 K images have been accumu-
lated from mission InSight alone in less than a year. And much more
image data are expected to be produced from incoming and future mis-
sions, such as Mars 2020. Two crucial questions then arise: (1) How can
we prioritize the images collected onboard to downlink due to the limited
bandwidth? (2) How can we search our local database efficiently for
images with desired geologic and/or non-geologic features?

These two questions are nontrivial to answer, since there is no
straightforward rule-based logic that can deal with images conveniently
and efficiently. With the latest advance in deep learning (Deng et al.,
2009; Krizhevsky et al., 2012; LeCun et al., 2015), promising methods
were proposed for problems involving planetary image data processing
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(Thompson et al., 2012; Rothrock et al., 2016; Wagstaff et al., 2018).
However, to the best of our knowledge, research have seldom been done
on helping machines “understand” multiple objects and their relation-
ships in visual data (e.g. images) in planetary exploration domain.

In this paper, we propose an approach to tackle these problems by
leveraging an LSTM-based image captioning neural network architecture
with visual attention mechanism, which pays attention on different parts
of an image at different times to encode them into embeddings and then
translates these embeddings into a meaningful sequence of words (a
caption) for the image. Relations of different parts in the image are
captured by the ordering of attentions, and are recovered into relation/
connection words in its caption. Remotely, images captured by a plane-
tary rover can be captioned in such a fashion and prioritized in accord to
the text similarity between their captions and scientist inputs (text de-
scriptions of desired features to look for). Locally, present image data
(e.g. the ones in NASA PDS) can also be captioned, after which users can
search these image data through text and results are returned in
decreasing order of text similarity. An implementation of text similarity
metric is also proposed in our work. Moreover, besides validating the
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Fig. 1. An illustration on the architecture of SCOTI.
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image captioning performance of the architecture, we also developed an
internal web tool to simulate remote image downlink tasks with text
descriptions for desired features from scientists, and integrated a beta
version of text-based search tool for local images onto NASA PDS to
encourage public test (Ono et al., 2019).

2. Related work

Researchers have been working for many years on automating the
data analysis process for planetary data.

Autonomous image data processing through feature engineering and
rule-based methods (Castano et al., 2003, 2007a) have been studied and
applied on prior missions through the integration into the Onboard
Autonomous Science Investigation System (OASIS) (Castano et al.,
2007b). These methods, however, depend heavily on the bank of care-
fully selected features and hand-crafted rules, which limit their scal-
ability beyond images of rocks, clouds and dust devils. A method that
combines both feature engineering and learning for image classification
(Woods et al., 2011) has also been proposed. But since it only learns how
to combine predefined descriptors (e.g. SURF and SIFT) rather than
learning those low-level feature descriptors (filters) from scratch, the
bank of descriptors constrain its capability of identifying other mean-
ingful features from an image.

Recent advance in machine learning and deep learning introduced a
variety of new approaches in processing planetary data, especially visual
data. Deep Mars (Wagstaff et al., 2018) takes advantage of recent
development in convolutional neural networks (CNNs) to classify
engineering-focused rover images (e.g. those of rover wheels, drill holes,
etc.) and orbital images. However, since Deep Mars adopts the archi-
tecture of AlexNet (Krizhevsky et al., 2012), it can only recognize one
single object in an image. Pixel-wise segmentation approaches were
explored by researchers. TextureCam (Thompson et al. Wagstaff) lever-
ages random forests to detect and classify rocks onboard. The Soil
Property and Object Classification (SPOC) (Rothrock et al., 2016) seg-
ments Mars terrains in an image by utilizing a fully-convolutional neural
network (FCNN). Although these methods are capable of segmenting and
classifying multiple objects (regions) in an image, they require training
datasets with pixel-wise segmentation annotations that are expensive to
collect, and fall short of understanding the relationships among different
objects in a scene.

Extracted features and predicted labels from the methods mentioned
above can be used in both data prioritization and local image search
(Castano et al., 2003, 2007a). prioritizes images to downlink through key
target signature identification, and (Woods et al., 2011) determines data
priority by feature-based image classification results. Again, these ap-
proaches rely heavily on manual feature engineering, require users to
input unintuitive feature vectors to specify high-priority targets and are
2

constrained to limited object categories (Wagstaff et al., 2018). searches
engineering-focused images through predicted labels and was integrated
into NASA PDS. But it is incapable of identifying multiple objects or their
relationships in an image.

In this paper, we describe our work that leverages recently developed
end-to-end image captioning methods (Kiros et al., 2014; Vinyals et al.,
2015) for a machine to “understand” planetary images. These methods
are advantageous because they can identify multiple objects along with
their relationships in an image, and translate the visual information into
human understandable text descriptions. The problems of data prioriti-
zation and local image search are then converted to the problem of
finding similar text descriptions, which has been researched on for a long
time (Gomaa and Fahmy, 2013; Han, 2018). More concretely, the image
captioning architecture we use is based on Long Short-term Memory
(LSTM) networks (Hochreiter and Schmidhuber, 1997) along with
attention mechanisms (Bahdanau et al., 2015; Xu et al., 2015), and we
adapt the Bilingual Evaluation Understudy (BLEU) metric to evaluate
similarity between generated image captions and user inputs.

3. Science Captioning of Terrain Images

This section describes the Science Captioning of Terrain Images
(SCOTI) network for tackling the problem of “understanding” planetary
images (primarily terrain images) for a machine. SCOTI extracts visual
features from a raw image input into a feature map (a multidimensional
vector), repeatedly pays attention to different parts of the image (rep-
resented by the feature map) and generates a caption (a text description)
for the image word by word.
3.1. Image captioning networks

The objective of an image captioning network is to learn an optimal
parameters θ* from a given training dataset D that maximizes the (log-
arithmic) probability of occurrence of all the image-caption pairs in the
dataset.

θ* ¼ argmax
θ

X
ðI;yÞ2D

logpðyjI; θÞ ¼ argmax
θ

X
ðI;yÞ2D

XK
t¼1

logpðytjI; y1;⋯; yt�1; θÞ

(1)

where I is an input image, y ¼ fy1;⋯; yKg with K < Kmax is the corre-
sponding caption with length K, and Kmax is the maximum number of
words in any caption.We also expand pðyjI; θÞ by the fact that a word yt in
a caption y depends on both the input image I the previously generated
word sequence fy1;⋯;yt�1g. The basic structure of an end-to-end image
captioning network is straightforward (Vinyals et al., 2015), consisting of
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two components: a visual feature extractor and a text decoder, as shown
in Fig. 1 (b) and (d).

A raw input image can be very large in size, which is computationally
expensive to process directly. So we need a visual feature extractor to
extract the most informative features from the input image for the pro-
cessing steps that follow. The visual feature extractor f extracts visual
features from an image I and encodes them in to a fixed and lower
dimensional feature vector x representing the image. Practically, to make
the feature extractor differentiable and trainable, we implement it with
convolutional layers following the VGG-19 architecture (Simonyan and
Zisserman, 2015) and parameterize it with θf .

x¼ f
�
I; θf

�
(2)

A text decoder T then follows to translate the feature vector x into a
caption y. One challenge is that the length of y may vary. Thus we
implement the text decoder with an LSTM (see Appendix A for details
about LSTMs), which is capable of generating outputs with variable
lengths. And it is natural as well to use an LSTM to model the dependency
pðyt jI; y1;⋯; yt�1Þ of a word yt on the prior word sequence. Similarly, we
parameterize the text decoder with θT .

y¼ Tðx; θTÞ (3)

Putting together, an end-to-end image captioning network can be
simply written as y ¼ Tðf ðI; θf Þ; θTÞ and we denote θ ¼ ðθf ; θTÞ as the
complete set of parameters for the network. Given the image-caption
pairs from a training dataset D, we can train the network by rolling out
the LSTM units in according to the target caption length and optimizing θ
with any gradient method (Kingma and BaAdam, 2015) in a supervised
manner with target images as input and target captions as output.

3.2. Visual attention mechanisms

At each stage 1 � t � K, the text decoder LSTM generates a word yt
and requires an external input xt (see Appendix A). With only one single
feature vector x ¼ f ðI; θf Þ extracted from the input image I, there are two
workarounds to fulfill the requirements. (1) We may set the first external
input x1 ¼ x and the rest xt ¼ 0;8t > 1, but this approachmay lead to the
lack of sufficient input information for the LSTM units at t > 1 to generate
the proper words. Or (2) we may set xt ¼ x;81 � t � K, which however
may also cause confusion easily for the network, since the external input
at any stages is identical.

The above two issues can be resolved by the introduction of visual
attention, as shown in Fig. 1 (c), which constrains the attention of the
network to particular parts of the input image at each stage t. Then the
corresponding external input xt becomes the attention-weighted visual
information from the input image, and thus varies at different stages. In
this work, we adopt the Bahdanau (soft) attention (Bahdanau et al., 2015;
Xu et al., 2015) among other approaches (Luong et al., 2015; Karpathy
and Fei-Fei, 2015). A attention generator g parameterized by θg ,
considering both the current step feature xt and the previous step output
yt�1, produces an attention weight vector αt .

et;i ¼ g
�
xt;i; ht�1; θg

�
αt;i ¼ expðet;iÞPL

j¼1exp
�
et;j
� (4)

In Eq. (4) above, the generator g generates a pre-normalized weight
et;i for each dimension xt;i in xt individually, where 1 � i � L and L is the
size of xt . The weights are then normalized with a softmax function to
produce an attention mask αt ¼ ½αt;1 ⋯ αt;L�T such that αt;i > 0;8
t; i and

PL
i¼1αt;i ¼ 1; 8t. The raw feature vector input xt to the LSTM is

then augmented by the attentionweighted average feature to indicate the
attention region.

xðLSTMÞ
t ¼

 
xt;
XL
i¼1

αt;ixt;i

!
(5)
3

Here xðLSTMÞ
t denotes the external input to the LSTM at stage t. The

training procedure remains the same as mentioned in the previous
section.

4. Text similarity for image prioritization and local search

While onboard image prioritization requires a remote device to pri-
oritize image data in accord to scientist inputs to downlink, local image
search requires a local server to prioritize image search results in accord
to user inputs to return to the user. These two tasks are similar in the
sense that they both prioritize images according to some inputs. We
propose that natural language description (in text) is an intuitive and
convenient form of such inputs, since it does not require comprehensive
understanding of the system to design a set of rules and target feature
vectors to look for as in (Castano et al., 2003, 2007a; Woods et al., 2011).
With text descriptions being inputs and the SCOTI network generating
captions for images captured onboard and/or stored on a local server, we
essentially converted the remote/local image prioritization problem into
a text similarity evaluation task.

A large amount of prior work has been done on text similarity eval-
uation in the machine translation community (Han, 2018). Among those
proposed approaches, we follow the BLEU metric (Papineni et al., 2002)
to evaluate the similarity between auto-generated image captions and
scientist/user inputs. BLEU can evaluate the similarity between a
candidate text (an auto-generated image caption) and a set of reference
texts (scientist/user inputs) jointly, which is advantageous since it is
common to have multiple inputs from scientists to describe a set of target
features to look for. And BLEU also accounts for both the word-wise and
the phase-wise match rate between two texts through n-gram precision.
An n-gram is a consecutive sequence of n word(s). Given a candidate c
and a set of reference texts R, the n-gram precision pnðc;RÞ defines a
metric that tells how much the candidate c matches the reference set R.

pnðc;RÞ¼
P

g2Gn;c
min
�
Cgjc;maxr2RCgjr

�
P

g’2Gn;c
Cg’jc

(6)

where Gn;t denotes the set of all unique n-grams in text t, while Cgjt counts
the occurrences of an n-gram g in t. And the minimization term in the
numerator essentially gives the number of non-repeated occurrences of
an n-gram g in both the candidate c and any of the reference r 2 R.
However, pn tends to favor shorter candidates. To reduce such an artifact,
a penalty term

ηðc; rÞ ¼

8><
>:

1 if LðcÞ > LðrÞ

exp
�
1� LðrÞ

LðcÞ
�

if LðcÞ � LðrÞ

is introduced to penalize candidates with short length, where LðcÞ and
LðrÞ denote the lengths of candidate c and reference r respectively. The
BLEU score sNðc;RÞ, which accounts both the length of candidate c and all
n-grams with n from 1 up to N, can then be defined.

sNðc;RÞ¼ ηðc; rMLÞexp
 XN

n¼1

wnlogpnðc;RÞ
!

where rML is the reference text with the maximum length in the reference
set R, and the hyperparameterwn weights the importance of n-grams with
different length n. The higher sN a caption is associated with, the high
similarity it has to the set of user/scientist inputs. Practically, the loga-
rithmic BLEU score logsN is more efficient to compute, and we may
further improve onboard image prioritization by combining other com-
mon strategies, such as novelty detection and representative sampling
(Casta~no et al., 2003).



Fig. 2. Workflow of the data aggregation and model retraining pipeline.

Fig. 3. The user interface of OpenAnnotator.
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5. Data pipeline

An important assumption made by supervised learning is data from
the training dataset and the testing dataset should be drawn from the
same distribution. It implies besides sufficient quantity and variance of
the training data, it is also vital to have the training dataset update-to-
date so that the SCOTI network model can be retrained on it and hence
is applicable to the acquired images from latest missions. For this reason,
we build a data pipeline to import and caption incoming images, allow
expert reviews, and retrain the SCOTI model to keep it update-to-data.

As shown in Fig. 2, the data pipeline starts with initial annotated data.
After (a) updating the annotated dataset, training data are used to (b)
train the SCOTI model. The trained model can be sent to a remote rover
to support onboard image prioritization, and used to (d) generate cap-
tions from new images from the image database (c) updated with
incoming images. The auto-generated captions for all images will be (e)
updated to the caption database, where the image-caption data can be
exported to a local server to support local image search. New images with
captions generated by SCOTI are sent to OpenAnnotator for open/expert
review, after which reviewed and annotated data are (a) updated to the
annotated dataset for the next round of model training. A data aggre-
gation rate δ is also defined to indicate the proportion of new annotated
data compared to those used in the last round of model training. Only
4

after δ > 0:5 will the next round of model training begin.
5.1. OpenAnnotator: A web-based multiuser annotation tool

OpenAnnotator is a web-based multi-user tool we developed for
image-caption data review and annotation. With this tool, users/experts
can vote for a caption or propose a different version for an image from the
database.

OpenAnnotator helps minimize the labor required for data annotation,
since an auto-generated caption is provided in the first place for each
image, which users can directly vote for. On the other hand, users may
propose a different caption by referring to existing ones so that they do
not have to conceive a new one from scratch. Moreover, it enables data
annotation in a distributed manner. Its potential integration to public
data servers such as NASA’s PDS prefigures the access to the help and the
collective intelligence from all users on these servers for data review and
annotation, which may also bring about positive social effect by
encouraging users’ participation (Fig. 3).

6. The Martian Image Caption Dataset

We created the Martian Image Caption Dataset (MICD) using Open-
Annotator (see section 5.1) to evaluate the SCOTI network as well as the



Fig. 4. Some data samples from MICD, where 4 image-caption pairs annotated by experts are presented on the left, and 16 more image samples are presented on the
right to demonstrate the data variety of MICD.

Fig. 5. Top-20 features in different categories identified from the MICD dataset.
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proposed image data prioritization and local image search approaches.
The dataset contains more than 12,500 pre-processed images captured by
the Mars Science Laboratory (MSL) rover, amongwhich 1,250 images are
annotated with expert captions. And the number of annotated images
continues to grow.

The images from MICD primarily capture Martian geologic features,
especially terrain features, where more than one objects or feature cat-
egories may exist in the same image. These images can be grayscale or
colorful, and non-geologic features may also be found in them, such as
the ones in the last two rows on the right in Fig. 4.

Expert-annotated captions inMICD consists of a rich set of words and
phases describing geologic features, non-geologic features, colors and
relations. The top-20 features in several different categories are shown in
Fig. 5, and a more comprehensive summary of the features identified
from MICD is also provided in Appendix B.

7. Experiment and results

We conducted both quantitative and qualitative experiment to eval-
uate the our proposed approach and system. In section 7.1, results of
quantitative experiment on evaluating the performance of the SCOTI
5

network are presented, including details about its training process and
metric scores on validation data. In sections 7.2 and 7.3, qualitative
experiment results of onboard image prioritization simulation and local
image search are discussed.
7.1. Training and evaluating SCOTI on MICD

Regardless of the extensive potential applications where the SCOTI
system can be used in planetary and astronomical domains, we evaluated
it primarily on Martian data from MICD in this work. In this section, we
will discuss the training details and systematical evaluation of the SCOTI
network. We also present quantitative results through the learning curve
and metric scores, along with some concrete examples.

In the experiment, we split the annotated data from MICD into the
training and validation datasets in a ratio of 0:9 : 0:1. Unlabelled data
from MICD constitutes the test dataset. And we adopt the architecture of
VGG-19 convolutional layers (Simonyan and Zisserman, 2015) as the
visual feature extractor, as shown in 1 (b). Due to the limited size of
annotated data from MICD, the weights θf of the visual feature extractor
are pretrained on ImageNet (Deng et al., 2009) to prevent overfitting.
After pretrained, θf is fixed while training (fine-tuning) the joint



Fig. 6. Learning curves of SCOTI network onMICD training dataset throughout the 3500 training steps (100 training epochs). The highlighted curves are smoothed by
averaging 10 nearby sample points from the actual learning curves shown on the background.

Fig. 7. BLEU-1, -2, -3, -4, METEOR, ROUGE-L, and CIDEr scores on the MICD validation dataset along 3500 training steps (100 training epochs).

Table 1
Evaluation of the SCOTI model trained on MICD with respect to BLEU-1, -2, -3, -4, METEOR, ROUGE-L and CIDEr scores, in comparison to those reported by Xu et al.
(2015) on Flickr8k, Flickr30k and MS COCO datasets.

Model/Dataset BLEU (B) METEOR ROUGE-L CIDEr

B-1 B-2 B-3 B-4

SCOTI/MICD 0.547 0.482 0.431 0.388 0.309 0.606 3.939
Xu et al./Flickr8k 0.670 0.448 0.299 0.195 0.189 – –

Xu et al./Flickr30k 0.667 0.434 0.288 0.191 0.185 – –

Xu et al./COCO 0.707 0.492 0.344 0.243 0.239 – –
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parameter θT of the visual attention layer and the text decoder, as shown
in Fig. 1 (c) and (d), on the training dataset. The training process is set up
as a supervised learning problem, where the inputs are raw images and
the outputs are the corresponding expert annotated captions. Adam
optimizer (Kingma and BaAdam, 2015) is used to optimize the
cross-entropy loss between the predicted and the ground-truth captions.
A training process for 3500 steps (100 epochs with 35 batches in each
one of them) is shown with the learning curves, including the cross en-
tropy loss curve and the accuracy curve, in Fig. 6 below.

Along the training process, the SCOTI model performance is evalu-
ated with metric scores, including BLEU-1, -2, -3, -4 (Papineni et al.,
2002), the Metric for Evaluation of Translation with Explicit Ordering
(METEOR) (Banerjee and Lavie, 2005), the Recall-Oriented Understudy
for Gisting Evaluation for Longest Common Subsequence (ROUGE-L)
(Lin, 2004) and the Consensus-based Image Description Evaluation
(CIDEr) (Vedantam et al., 2015). Fig. 7 visualizes these scores on the
6

MICD validation dataset along the 3500 training steps.
After trained for 3500 steps, the SCOTI network performs reasonably

well with respect to the validation metric scores in comparison to the
state-of-the-art reported in (Xu et al., 2015), where the visual feature
extractor is also pretrained but the image captioning model is fine-tuned
in more complex domains implicitly defined by Flickr8k, Flickr30k and
MS COCO datasets. Table 1 compares the metric scores between SCOTI
on MICD and the state-of-the-art.

An interesting observation is that though SCOTI trained on MICD
almost outperforms the state-of-the-art trained on more datasets in more
complex domains, but has a lower BLEU-1 score. More training steps until
overfitting can further improve the performance of SCOTI, but it is
important to note that the amount and variety of training data can also
affect the model performance significantly. Compared to merely over a
thousand annotated images in MICD, most public datasets such as
Flickr8k, Flickr30k and MS COCO have more than tens of thousands of



Fig. 8. Some captioning results of unlabelled images from MICD.

Fig. 9. User interface of the onboard image prioritization and data downlink simulator.

Fig. 10. Simulated prioritized downlink results given user (scientist) inputs.

D. Qiu et al. Planetary and Space Science 188 (2020) 104943
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annotated image-caption data. It is anticipated to see better performance
of the SCOTI network after more annotated planetary image-caption data
become available.

We also present in Fig. 8 some concrete image captioning results
generated by the SCOTI model, showing that our model is capable of
captioning images in various conditions including both greyscale and
colored ones, taken from the planet Mars with a rich set of landscape
features and objects in them.
7.2. Onboard image prioritization and downlink simulation

Integration of the proposed system, including the SCOTI network and
the image prioritization pipeline, to a planetary rover or any other on-
board system is nontrivial and requires much further research, optimi-
zation and validation. In this paper, we only explore the proof-of-concept
level potential of leveraging machine learning to facilitate future mis-
sions in planetary exploration. To that end, we build a simulation system
to simulate the onboard image prioritization and data downlink
processes.

The simulation system consists of a simulated onboard server and a
simulated ground-based server. A trained SCOTI network model and an
image data prioritization pipeline are deployed to the simulated onboard
server, which simulates a planetary rover or any other onboard device. A
downlink task commander and an image data collector are implemented
on the simulated ground-based server. A user can access the ground-
based server through its user interface, as shown in Fig. 9, to submit a
new prioritized data downlink task request, check task status and view
finished tasks.

We load the unlabelled images from MICD to the simulated onboard
server as the images captured by the onboard device. Fig. 10 shows the
first 16 images downlinked after onboard image prioritization in three
different prioritized downlink task simulations. In the above experiment,
we use weights fwng4n¼1 ¼ f0:8;0:15;0:045;0:005g for BLEU in image
prioritization, which is a set of hyperparameters we found to perform
reasonably well in preliminary experiment.
7.3. Local image search through text descriptions

Local image search is essentially equivalent to onboard image prior-
itization using the same text similarity metric to return the images with
the most similar auto-generated captions to the text description inputs
from users. The onboard image prioritization and downlink test from the
previous section directly reflects the capability of our proposed method
on local image search. Furthermore, a beta version of text-based local
image search tool was also integrated onto NASA PDS for public test (Ono
et al., 2019).

8. Conclusion and discussion

We propose an approach that generalizes the tasks of both onboard
image prioritization for data downlink and local image search for plan-
etary image data servers into the problem of image captioning and text
similarity evaluation. Though it is still a proof-of-concept level system,
SCOTI demonstrates its potential in facilitating data transmission effi-
ciency from planetary rovers to ground-based data system by prioritizing
the image data with highest scientific values according to requests from
scientist through text-based instructions. Such an approach avoids the
need for scientists to have a deep understanding of the in-flight software
engineering details in order to come up with a set of unintuitive feature
vectors in order to instruct what data to prioritize for downlink.
Furthermore, the similar essence behind image search and image prior-
itization allows us to naturally apply the same image captioning and text
similarity based data prioritization mechanism to local image search.
And a beta version of the local image search tool was deployed to NASA’s
PDS being available for the public (Ono et al., 2019). With the data
8

pipeline and the OpenAnnotator tool we developed, the number of an-
notated images in the Martian Image Caption Dataset continues to grow,
and hence the performance of the SCOTI network and the overall system
can keep improving.

Though in this paper we mainly focus on terrain images captured by
Martian rovers, but it does not preclude the applications of the SCOTI
system in any other planetary and astronomical context. In fact, the same
framework as proposed can be applied on different kinds of visual data
captured by any type of space device besides planetary rovers, simply by
retraining SCOTI on the corresponding data. One typical example of such
an extended application is images captured by satellites, which can be an
interesting future work. And as aforementioned, we focus this work on
the proof-of-concept level validation of leveraging machine learning,
more specifically image captioning, on planetary exploration, further
optimization, such as its implementation on a High Performance Space-
flight Computing (HPSC) platform, and hardware-in-the-loop validation
will be required in order to actually deploy the SCOTI system onto a
planetary rover in any future flight mission. And these will be our
following work to carry out.
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