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Abstract

Achieving consistently high levels of productivity has been a challenge for Mars

surface missions. While the rovers have made major discoveries and dramatically

increased our understanding of Mars, they require a great deal of interaction from

the operations teams, and achieving mission objectives can take longer than an-

ticipated when productivity is paced by the ground teams' ability to react. We have

conducted a project to explore technologies and techniques for creating self‐reliant
rovers (SRR): rovers that are able to maintain high levels of productivity with re-

duced reliance on ground interactions. This paper describes the design of SRR and a

prototype implementation that we deployed on a research rover. We evaluated the

system by conducting a simulated campaign in which members of the Mars Science

Laboratory (Curiosity rover) science team used our rover to explore a geographical

region. The evaluation demonstrated the system's ability to maintain high levels of

productivity with limited communication with operators.
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1 | INTRODUCTION

Maintaining high levels of productivity for Mars rover missions has

proven to be challenging. While the operations teams have achieved

impressive accomplishments with the rovers, doing so requires sig-

nificant human effort to develop command products for the rovers

and it often takes longer, more days on Mars (aka sols), than an-

ticipated to accomplish objectives. A primary reason for these pro-

ductivity challenges is the heavy reliance on interaction between the

rovers and ground operators to accomplish mission objectives. For

example, rovers depend on operators to provide a detailed schedule

of activities, select science targets, navigate around slip hazards, and

recover from anomalies. When combined with the limited commu-

nication opportunities between the rovers and human operators, this

reliance on ground interaction results in under‐utilization of vehicle

resources and increased sol on Mars to accomplish mission

objectives.

This issue is anticipated to become increasingly important for

future Mars missions as our aging sun‐synchronous data relay orbi-

ters are replaced by non‐sun‐synchronous orbiters. The overflight

patterns of non‐sun‐synchronous orbiters result in reduced oppor-

tunities for ground‐in‐the‐loop interactions with the rovers.

We have developed a design for future rover flight software to

address these productivity challenges. We refer to the approach as

self‐reliant rovers (SRR) as the objective of the work is to increase

the ability of rovers to accomplish objectives and respond to un-

expected conditions with reduced reliance on human intervention.

Although our objective is to reduce the reliance on ground support
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to promote productivity, we are by no means attempting to remove

human operator involvement, whether mission engineers or scien-

tists. To the contrary, a major emphasis of our work is to enable

operators to provide guidance to rovers without requiring up to date

knowledge of the rover and its environment.

In this paper we present our design for developing and operating

a SRR. The design is motivated by the results of an extensive case

study of Mars Science Laboratory (MSL) operations that we per-

formed during the first year of this project (Gaines et al., 2016).

We have developed a prototype implementation of this design and

deployed it on a research rover. The prototype includes advance-

ments in goal planning, autonomous science, health assessment,

autonomous navigation and global localization.

To evaluate the efficacy of the SRR approach we conducted a

simulated exploration campaign in which members of the MSL sci-

ence team used our rover to explore a geographical region. The

evaluation demonstrated that the our approach was able to achieve

significant productivity improvements over the current approach to

rover design and operation. In particular, the evaluation demon-

strated that the SRR approach achieved an 80% reduction in number

of sols to complete the campaign.

To provide context for the project, we begin in the next section

with background on the current practice for operating Mars rovers

with a brief introduction to MSL operations.

2 | BACKGROUND ON MSL MISSION
OPERATIONS

One of the challenges of surface missions is the degree to which

operations are impacted by a priori unknown and changing en-

vironmental conditions. While orbital imagery provides valuable in-

formation to guide activity, it does not capture all the conditions that

affect the rover. For example, while orbital imagery may indicate that

exploring a particular region is promising to achieve a science ob-

jective, the specific science targets are not known until additional

data is collected from the rover itself. As such, surface operations

must be reactive and respond to the results of activity carried out

during the previous sol (Martian day). This daily planning activity is

referred to as “tactical” operations and is patterned after the tactical

operations developed for the Mars Exploration Rovers (Mishkin

et al., 2006).

MSL operations augments this tactical process with “strategic”

and “supratactical” phases (Chattopadhyay et al., 2014). Strategic

planning focuses on developing long‐term plans, typically spanning

weeks or months, to achieve high‐level objectives. Examples of

strategic planning include the development of strategies for explor-

ing a large geographical area or a high‐level traverse route for

reaching a distant objective. The supratactical stage provides a

bridge between the long‐term strategic plan and the day‐to‐day,
highly reactive tactical process. The process is designed to co-

ordinate the complex science instruments and manage the con-

straints and resources required to conduct campaigns.

2.1 | An example sol in the life of the rover

To provide an idea of how the team operates the rover, Figure 1

illustrates an example sol of rover activity. This is an example of a

typical drive sol, derived from an actual sol, Sol 780, command

products. Following are some key aspects of the diagram.

The plan for each sol begins with an “Uplink” window in which

new commands products may be sent to the vehicle from Earth.

There are various downlink windows throughout the sol in which the

rover uses orbiter relays to send collected data back to Earth. While

there are multiple downlink windows, certain downlinks have in-

creased importance based on the time that data in the relay will

reach operators. If data from a relay will reach operators by the start

of the next tactical planning shift, then they relay is termed “deci-

sional” because data from the relay can be used to make decisions in

for the rover's next plan. Which relays are considered decisional

F IGURE 1 Example sol in the life of the rover [Color figure can be
viewed at wileyonlinelibrary.com]
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depends on the relative timing between Earth and Mars along with

latencies in the orbiter relay process. In Figure 1 the starred “MRO

Relay” represents the decisional relay for this sol. It is important to

realize that for this plan, only the data collected before this pass

could be used to inform the next plan. While the remaining data will

eventually be sent to Earth and may be used to inform future plans, it

will arrive too late to inform the next plan.

Another important aspect of Figure 1 is how the team structures

the sol into “blocks” of activity. For example, the main portion of the

rover's day consists of a Pre‐Drive Science block, a Drive with Mid‐
Drive Imaging bock and a Post‐Drive Imaging block. The block

structure organizes activity into related groups and allows a “Master”

sequence to enforce timing between these major types of activity.

The latter has to do with uncertainties in predicting the duration of

activity in the plan. Due to environmental conditions such as lighting,

scene content and terrain, the time to perform imaging and drive

activities varies. The team uses the block structure to ensure that if

activity in one block runs longer than expected, it can be cut off to

avoid interfering with subsequent activity. To protect against loss of

data, the team builds “Margin” into each block, to allow activities to

run longer than predicted. To deal with cases where durations ex-

ceed allocated margin, the team also sequences “Cleanups” after

each block, to ensure that any activity is forcefully terminated before

the start of the next block.

2.2 | Constrained sols

The vast majority of the surface mission is conducted with the team

restricting operations to daytime hours on Earth. The consequence is

that the operations team is often out of sync with the activity of the

rover on Mars. Figure 2 illustrates the impact this can have on the

data available to the team during planning. In the diagram, the end‐
of‐day relay from the rover arrives on the ground late in the Earth

day. The team waits until the next Earth day to begin planning.

Meanwhile the rover is waking up for its next Mars day without a

new set of command products from Earth. By the time the team has

completed the tactical process, they must wait for the subsequent

Mars morning to uplink the products to the vehicle.

This often limits what the team can have the rover do during the

middle sol of Figure 2. If the vehicle were allowed to make significant

changes to its state, in particular driving to a new location, this would

significantly limit the types of activities the team could command on

the subsequent sol. These limited activity sols are referred to as

“constrained sols” because the latency of data often restricts the

type of activity the team can perform.

A similar situation arises when the team takes days off for

weekends and holidays. In these cases, the team will create plans

that span multiple sols (aka multisol plans). Again, activities that

result in significant changes to vehicle state are limited since they

will impact the activity that can be done in later sols of the plan.

Given the current way in which we design and operate rovers,

constrained sols are a major detractor from mission productivity. For

example, with current surface operations, when the rover drives to a

new location it must wait for imagery collected at this location to be

sent to Earth and for the science and engineering teams to analyze

the data and identify the specific set of activities to perform

at the location to meet their current mission objectives. Depending

on the phasing of Earth and Mars local time, this can result in an

entire sol in which the rover waits for these new activities.

Overall, 41% of sols on the MSL mission are constrained sols

simply due to the frequency that the ground operations team is

available to respond to the latest downlink with a 9‐h shift. More

recent orbiters, such as Mars Atmosphere and Volatile EvolutioN

(MAVEN), have highly eccentric orbits which do not provide the

consistent end‐of‐sol relay opportunities that MSL has enjoyed with

MRO. Therefore, relying on such orbiters would result in an increase

in the number of constrained sols.

2.3 | Productivity challenges

In the first year of the SRR project we conducted an extensive case

study of MSL operations to identify significant productivity chal-

lenges. In the study, we analyzed three different MSL campaigns. Our

report provides full details of the study (Gaines et al., 2016). Here we

provide a high level summary of the major outcome.

The report identified two primary metrics for mission productivity:

• Percentage of sols making significant contributions toward cam-

paign objectives

• Utilization of vehicle resources

The term “significant contribution” is used to distinguish be-

tween certain types of activities that, while arguing providing some

support for a campaign objective, was not providing a substantial

contribution. For the campaigns we investigated, there were two

types of activities that were considered to have low productivity if

they were the only activities performed on a sol.

First, there was a specific set of “blind targeting” activities for

the ChemCam instrument. These activities were sometimes per-

formed on constrained sols (i.e., sols that followed a drive without

ground‐in‐the‐loop. The activity performs a ChemCam observation at

a fixed point relative to the rover. Depending on where the rover

happens to stop, this could result in an observation of outcrop, a float

F IGURE 2 Mars activity versus Earth planning [Color figure can
be viewed at wileyonlinelibrary.com]
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rock, or soil. For sols in which this blind targeting activity was the

only activity contributing toward campaign objectives, we considered

such sols as having low contribution to campaign objectives.

Second, we considered the productivity of sols in which the ro-

ver spent the sol driving to a location of interest. If the rover was

able to effectively use resources to make progress toward the op-

erators' goal location, then the sol would be considered to have high

productivity. In contrast, cases in which the drive faulted out or the

drive distance was limited by operators' visibility of terrain rather

than vehicle resources were considered low productivity.

2.3.1 | Sol productivity

For the first metric, we looked at how effectively each sol of a

campaign was used toward accomplishing campaign objectives.

Figure 3 shows the results.

Sols were binned into the following categories:

• Campaign: The sol directly contributed to the campaign objectives

with remote sensing and/or drives. These sols are considered

“productive” sols.

• Campaign multisol: The sol contained significant activity was per-

formed toward the campaign objectives as part of a multisol plan,

either due to a weekend or constrained planning. This limited the

choices the team had for what to include in this sol and may have

been used differently had it not been part of a multisol plan. Despite

this qualification, these sols are still considered “productive” sols.

• Extra drives: A sol in which unexpected additional drives were

required to reach objectives. This includes cases where a planned

drive faulted out early and had to be replanned on a sub-

sequent sol.

• Postdrive multisol: A sol in which the team was not able to achieve

substantial campaign objectives due to lack of data following a

drive during a multi‐sol plan.
• Deferred: A sol in which campaign objectives were unexpectedly

deferred due to the need to respond to an issue identified during

tactical plan development or in response to an event from re-

ceived downlink data.

• Runout: A sol consisting of very low activity, that is, used in cases

the team had to create multisol plans but the tactical timeline

capacity did not allow for sufficient time to develop activities for

all sols of the plan.

We observed that across the three campaigns, there was a re-

latively large number of sols with low productivity. Specifically, 48%

of the sols were classified as low productivity.

2.3.2 | Resource utilization

The above observation indicates that there is opportunity to increase

productivity if these low productivity sols can be used more pro-

ductively. However, it is not clear if there are sufficient vehicle re-

sources available to be more productive. To answer that question, we

performed a detailed analysis of how vehicle resources were used,

including energy, time and data volume. The case study report pro-

vides the full detail. Here we summarize that we observed that there

were, in fact, sufficient resources to be more productive.

As an example, Figure 4 shows an analysis from the Pahrump

Hills Walkabout campaign that showed there was an estimated 72 h

of unused energy over the 19 sols of the campaign, or an average of

3.8 h per sol of unused energy. The unused energy comes from two

sources: shunt energy and rover idle time. When the rover battery

has been charged to its capacity, additional generated energy is

shunted. This lost energy could have instead been used by the rover

to perform additional activity. When activities on the rover complete

earlier than expected, the rover remains awake in an idle state until

the schedule shutdown time. As with shunt energy, this idle energy

would ideally be put to more productive use.

We found similar results for the other two campaigns and found

that there was an average of 3 h of unused energy across all

F IGURE 3 Sol productivity for case study campaigns [Color figure can be viewed at wileyonlinelibrary.com]
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campaigns. For context, we observed that each sol had an average of

9 h of activity, thus an additional 3 h would represent a 33% increase

in overall activity. More importantly, if these hours can be used ef-

fectively it would enable the team to increase the productivity of the

lower productivity sols from Figure 3.

2.3.3 | Significant productivity challenges

The case study included an analysis of the challenges the team faced

in making more effective use of sols and vehicle resources. The re-

port includes a more complete listing and discussion. Here we

highlight the three that we believe contributed the most to loss of

productivity in the campaigns.

1. Predicting Vehicle Resource Usage: It is difficult to predict how long

activities will take to complete. Operators tend to overestimate

duration to avoid activities being cut off. As a result, activities

typically end earlier than expected which contributes to the rover

idle time described in Section 2.3.2.

2. Ground‐in‐the‐loop for target selection and drive planning: The rover

relies on ground operators to pick out specific science targets and

to identify paths around slip hazards, such as patches of loose

sand. This results in a significant drop in productivity on sols that

follow drives during constrained periods of the mission. Even

during nonconstrained sols, it constrains the timing of activity

that can change the state of the vehicle and activity that acquires

decisional data to occur before the decisional pass.

3. Ground‐in‐the‐loop to respond to outcome of activity: We observed

several instances where the team decided to re‐do an activity, or

return to a previous location, after observing the data received

from the vehicle. This included the need to replan drives that

faulted out or require observations that did not have intended

results due to lighting conditions or targeting problems.

The above challenges served as a guide for our project. We used

these challenges to identify what aspects of the flight software ar-

chitecture and ground practices to target and what approaches and

technologies to develop to address them. The following section de-

scribes the resulting system and the changes we identified.

3 | OVERVIEW OF THE SRR DESIGN

We developed the SRR system to address the productivity chal-

lenges described in Section 2.3.3. The system is designed within

the context of the current rover flight software architecture with

changes necessary to address the identified productivity chal-

lenges (Weiss, 2013). Figure 5 provides an overview of this

architecture and the changes we are introducing with the SRR

system.

The architecture consists of components organized into three

layers: behaviors, activities, and functions. Each successive layer has

a reduced degree of autonomy, fewer interactions with other com-

ponents, and a narrower scope of system knowledge.

• Behavior: Collection of autonomously scheduled activities in ser-

vice of an over‐arching mission goal. Contains broad system

knowledge.

• Activity: Coordinates function invocations to achieve some high‐
level spacecraft task. Encompasses knowledge local to the activity

being managed.

• Function: Primitive action required to achieve a single well‐
delineated spacecraft objective. Contemplates only highly loca-

lized function‐specific knowledge.

Following is a summary of the changes we are introducing for

the SRR approach. Subsequent sections will provide more details on

the most significant changes.

F IGURE 4 Estimate of extra duration availability for Pahrump Hills Walkabout campaign [Color figure can be viewed at
wileyonlinelibrary.com]
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• Goal planner: Generates onboard activity plans to accomplish

mission goals. This addresses Productivity Challenge Item 1, from

Section 2.3.3, by enabling the rover to respond onboard to actual

resource usage. It also addresses Productivity Challenge Item 2 by

allowing the rover to respond to new goals identified by onboard

autonomous science.

• Executive: Executes plans generated by the Goal Planner and

provides updates to facilitate replanning.

• Autonomous science: Identifies science targets when the rover

enters an unexplored area. Increases the scope of guidance that

scientists can provide and deepens the integration with onboard

planning, as compared with previous autonomous science on MSL

(Francis et al., 2017). This addresses Productivity Challenge Item

2 by enabling the rover to identify its own targets, with the help of

scientist guidance, without waiting for ground‐in‐the‐loop
interaction.

• Mobility manager: Improves navigation by reasoning about terrain‐
dependent slip and by detecting and avoiding sand hazards. This

addresses Productivity Challenge Item 2 by enabling the rover to

plan drives around sand hazards without relying on ground

assistance.

• Mobility health manager: Increases the robustness of mobility ac-

tivities and the scope of faults from which the rover can auton-

omously recover by leveraging model‐based fault detection and

isolation. This addresses Productivity Challenge Item 3 by en-

abling the rover to recover from certain types of mobility faults

that would otherwise require the rover to wait for ground

intervention.

• Global localization: Maintains high quality position knowledge over

long traverse distances via onboard global localization (a techni-

que that previously required ground operator support).

• Target database: Facilitates communication about targets of inter-

est among scientists, engineers, and onboard autonomous com-

ponents by leveraging previous ground operations tools onboard.

• Data management: Provides queryable onboard data product ac-

cess to autonomous components such as onboard science analysis.

• EH&A: Provides onboard access to engineering, housekeeping, and

accountability telemetry for use by autonomous reasoning

components.

4 | ONBOARD PLANNING

We address a number of the aforementioned productivity challenges

via the inclusion of an onboard goal planner. The planner incorporates

up‐to‐date knowledge of onboard resource levels and vehicle state

to generate sequences of activities that fulfill high‐level mission

objectives. This allows the team to use less conservative modeling of

F IGURE 5 Self‐Reliant Rover flight software architecture [Color figure can be viewed at wileyonlinelibrary.com]
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activity resource use and duration, which in turn contributes to less

idle time due to unused margin.

The inclusion of a planner also enables the system to respond to

new objectives identified by onboard autonomous science, described

in the next section. This combination of onboard planning and au-

tonomous science allows the rover to make better use of the low

productivity sols identified in Section 2.3.1.

Ground‐based planning teams retain the ability to command

specific actions, but the primary means of guiding rover operations

becomes the crafting of these high‐level goals. In this way, the on-

board goal planner supplements and enhances, rather than replaces,

the traditional tactical planning process.

4.1 | Campaign intent

A significant challenge to maintaining high rover productivity under

reduced operator interaction is conveying operator guidance and ob-

jectives without requiring operators to have up to date knowledge of

the rover and its environment. Our approach is motivated by prior

operations practice. In traditional operations, each planning cycle be-

gins with a review of the current long term objectives of the mission

presented in the context of the latest available rover state data

(Chattopadhyay et al., 2014). The operators assimilate all the various

objectives, state data, and mission knowledge to synthesize a high

quality plan that makes progress toward the goals while respecting

limited rover resources such as time, energy, and data volume.

The team will typically have several high‐level objectives to pursue.

For example, during MSL's Pahrump Hills Walkabout campaign, the pri-

mary focus of the mission was to collect observations of exposed outcrop

forming the basal layer of Mount Sharp (Gaines et al., 2016). This re-

quired driving the rover to several locations and acquiring high quality

Mastcam and ChemCam observations selected locally at each stop.

Concurrently, the team also pursued a variety of supplementary

objectives. During this campaign, the comet Siding Spring (Comet

C/2013 A1) would pass Mars closer than any other known comet

flyby of Earth or Mars. The operations team thus incorporated

comet observations into the rover plans. In addition, the team

planned ongoing periodic observations to study clouds, dust devils,

and atmospheric opacity. A wide range of recurring engineering

activities also had to be included: instrument calibrations, telemetry

collection, and system configuration management.

Importantly, the quality of the plan is not just a function of what

activities are scheduled; it depends on how well they relate to the

current objectives and to each other. Each individual outcrop ob-

servation was valuable, but understanding the geology of the region

required accumulation of a variety of observations that were spa-

tially distributed throughout the area. Periodic tasks such as atmo-

spheric measurements and engineering activities had similar

preferred temporal patterns that the team must try to match.

We developed the concept of campaign intent to convey such

information to the rover so that it may generate its own prudent in

situ plans when human guidance is prohibitively delayed. Campaign

intent specifies a set of goals for the rover and the relationships

among those goals. We gleaned three initial types of campaign intent

from MSL scenarios, as summarized in Figure 6.

• Class sampling: Choose observation targets that best exemplify a

particular feature (e.g., layering). Once identified, the targets form

a goal set. Value typically accumulates with additional samples

from the set, but eventually reaches a point of diminishing returns.

• Temporally‐Periodic sampling: Schedule goals to match a repeating

temporal pattern (e.g.,hourly). The preferred goal cadence typi-

cally allows at least some timing flexibility.

• State‐based sampling: Trigger goals based on the evolution of the

rover/terrain state (e.g., at every 50 m traveled). The state criteria

is typically expressed as a preferred cadence with some flexibility.

4.2 | Using campaign intent to guide planning

Our approach to plan generation is based on branch‐and‐bound search.

Starting from the empty plan, each iteration of search expands a chosen

partial plan into many possible successor plans (the branches). Each

potential successor is scored and must exceed a running threshold of

plan quality (the bound) To be retained for future expansion; otherwise

it is pruned (along with all its descendants). Specifically, the optimistic

maximum quality of any plan based on the candidate partial plan must

exceed the pessimistic minimum quality prediction of all other candi-

dates already considered. Plan quality is evaluated as the degree of

satisfaction of the campaign intents, which may be both priority tiered

and utility weighted by the user. The frontier of un‐expanded partial

plans is periodically sorted by estimated final plan quality, yielding a

hybrid of depth‐first and best‐first expansion order.

Partial plans are always expanded forward in time by appending

one of the possible subsequent actions to the growing plan. The

possible actions include mandatory goals (such as communication

passes), auxiliary actions (such as sleep periods), as well as all the

possible goals introduced by campaign intents. For temporal and

state‐based campaigns, this is just the next instance of the periodic

goal, timed within its allowed cadence. For unordered goal set

campaigns, each remaining un‐attempted goal becomes a possible

addition. In the limit, the search will thus evaluate (or justifiably

prune) all possible combinations and orderings of campaign goals.

The complete search can be very time intensive, but is guaran-

teed to return an optimal plan according to the expressed campaign

preferences. Even without running to completion, the search can

return the best plan encountered so far. This anytime algorithm

feature allows the rover to limit its planning time and proceed to be

productive with a reasonable (but not provably optimal) plan. Minor

plan perturbations during execution are accommodated by time‐
efficient repair strategies (e.g., to shift actions forward after a small

driving delay), while major disruptions (such as an insurmountable

obstacle in a drive, or the injection of an entirely new goal) invoke a

full replanning cycle so that all goals are reconsidered. More details

on the planning algorithm can be found in Russino et al. (2019).

GAINES ET AL. | 7



Figure 7 shows an example plan generated by the search algorithm.

The planning model derives from the operational MSL activity model and

features important mission aspects such as science campaign activities,

communication windows, regenerative sleeping, and device heating.

The campaign objectives provided to the rover in this example

include: a goal set campaign with a distant Mastcam target (entailing

a long‐range traverse), a temporal campaign with recurring atmo-

spheric opacity (tau) measurements every 3 h, and state‐based
campaign with mid‐drive survey actions after every 75m traveled.

The resultant plan demonstrates how the planner synthesizes the

campaign relationships to coordinate rover activity, including paus-

ing the ongoing drive action to interleave other objectives.

5 | SCIENTIST‐GUIDED AUTONOMOUS
SCIENCE

As identified in our case study, one factor affecting the productivity

of rover missions is the requirement of ground‐in‐the‐loop for se-

lecting science targets using the highest‐resolution imagery acquired

after arrival at the new site. If scientists would like to take ob-

servations and measurements at several locations, they must use at

least one ground‐in‐the‐loop cycle at each location. With limited

communication opportunities, this can stretch out the exploration of

a series of locations over many sols.

5.1 | Using campaign intent to guide autonomous
science

To alleviate the requirement of ground‐in‐the‐loop for science target

selection, we have developed a collection of capabilities that enable

“scientist‐guided” autonomous exploration of previously unseen loca-

tions. Because no algorithmic approach can currently match the nuanced

decision‐making of human geologists in selecting targets, we adopt a

strategy to mitigate the limitations of autonomous science systems. The

strategy recognizes that there are several common geological observa-

tions that can be aided and executed by an algorithmic approach, such as

recognizing familiar rock types, identifying changes between rocks of

different types, and noting rock textures such as layering.

F IGURE 6 Summary of campaign intent types [Color figure can be viewed at wileyonlinelibrary.com]
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We call our strategy “scientist‐guided” to emphasize that we

attempt to incorporate as much prior geologic/contextual knowledge

as possible into the behavior of the algorithm. At the most abstract

level, we parameterize autonomous science by (1) what type of

targets to identify in a scene, and (2) how to measure the targets that

have been identified. Using auxiliary information available during

strategic planning, such as orbital imagery, scientists can decide what

types of geologic features are likely to be at any given location. Then,

scientists can decide the best strategy for measuring each of the

features they expect to find (e.g., which instrument to use to take

images or spectral observations). Each of these high‐level directives
correspond to a “class sampling” campaign intent (described in

Section 4.1) that provides guidance, such as “take Mastcam images of

layering in the light gray outcrop” or “take Laser‐Induced Breakdown

Spectroscopy (LIBS) measurements of the tan‐colored outcrop.”

Finally, scientists can provide information to the planner to specify

the relative priority or utility of performing each campaign.

5.2 | Novel tools for scientist‐guided autonomy

We build upon existing work to develop new tools that scientists can

use to specify (1) what they would like to measure and (2) how they

would like to measure it. Starting with the first category, the types of

targets scientist‐guided autonomy can identify are individual geolo-

gic units, “contacts” between units (regions where two units are

visibly adjacent), and layering within units. To identify individual

units, we use the existing pixel‐wise classification software

TextureCam (Thompson et al., 2012). The generality of TextureCam

allows it to be used for identifying everything from specific geologic

units for surface missions to atmospheric features such as clouds

seen from space during orbital missions (Chien et al., 2016). Many of

the new technologies we propose use the output of TextureCam, a

probability that each pixel belongs to a class of interest, as an input

for processing and target selection. Training a TextureCam classifier

requires that examples of a particular feature of interest have been

seen previously.

A geologic contact between two units can reveal key in-

formation about the history of formation of the units as well as

what occurred in the intervening time between when each of the

units was deposited. Accordingly, we have developed a new al-

gorithm called Finding Oriented Regions of Contact (FORC) that

uses the output of TextureCam to determine where two particular

geologic units are in contact with each other. For geologic units A

and B, FORC works by first running TextureCam on board to

produce probability maps PA and PB containing the probabilities

that each pixel in an image I belongs to units A or B, respectively.

These probabilities are combined to produce a “contact score” for

each pixel in the image, which corresponds to the probability that

the two units are adjacent at that pixel. After the contact score is

derived, any number of algorithms (some of which are described

below) can be used to select targets for observation based on this

score. An example using the FORC algorithm is shown in Figure 8.

At an area known as Marias Pass, the Curiosity rover encountered

a contact between the lighter‐toned Murray unit and darker‐
toned Stimson unit (Newsom et al., 2016). Using previously ac-

quired Navcam images, we trained TextureCam to label each of

these units. Then, we applied the trained models on an image of

the contact from Sol 992. Using the output of TextureCam, the

FORC algorithm was then used to produce a contact score, shown

on the far right of Figure 8. The pixels with contact score ex-

ceeding 0.5 are highlighted. Although there are some small false‐
positive regions, the approach successfully identifies much of the

visible contact region between the two units.

Layering or stratification is another essential feature used to

geologically characterize a new area. Layered rocks can be formed by

the deposition of materials via water, air, or other geological pro-

cesses such as lava flows. Understanding the depositional environ-

ment of a rock can inform the conditions present at the time of its

formation, which can give clues about past habitability. In addition to

F IGURE 7 Example generated plan
illustrating a long‐range drive objective that
was split up to support two different types of
campaign objectives [Color figure can be
viewed at wileyonlinelibrary.com]
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identifying regions with layering, it is also desirable to infer the

orientation of layering within each region to inform follow‐up mea-

surement strategies. For example, it could be desirable to acquire

LIBS measurements across the layers within a rock to determine how

the depositional environment changed over time. Accordingly, the

novel Fast Oriented‐Layer Detector (FOLD) algorithm is designed to

both detect and determine the orientation of layers within a scene.

Figure 9 shows an example of FOLD operating in “sliding‐window”

mode to detect layering across a large field‐of‐view image. The image

was taken by the MSL navigation camera, and shows a layered butte

within the “Murray Buttes” region of Gale Crater. The lower image in

the figure shows a heat map (white is the “hottest”) of the signal‐to‐
noise ratio (SNR) at each pixel within the image. Small black bars

show the orientation of layering at each pixel. FOLD not only detects

the layering within the butte, but also the layering of blocks that

have fallen from their original locations.

The second category of algorithms must take the output of

TextureCam, FORC, or FOLD and determine how to measure the

identified features of interest. The diverse onboard target selec-

tion (DOTS) algorithm addresses the scenario in which scientists

are interested in acquiring “diverse” measurements of a geologic

region. That is, if TextureCam detects several similarly relevant but

disjoint geologic regions within a scene, scientists might prefer to

take a measurement of each separate region rather than taking

several measurements within one region. Such a measurement

strategy allows scientists to assess the geochemical diversity of a

scene rather than focusing measurements on one isolated area.

DOTS is designed to take pixel‐wise scores such as TextureCam

probabilities or FORC contact scores and produce a set of specific

point targets to be measured. DOTS works by greedily selecting a

target that has the highest probability of belonging to a region of

interest, then removing from consideration all points that can be

reached from the target by a path that stays (with high probability)

inside a contiguous patch of the same region. This process con-

tinues until the desired number of targets have been found, or no

relevant geological regions remain unmeasured. An example of

DOTS is shown in Figure 10.

Finally, it is common to take a series of remote sensing

measurements in a line or grid to cover a region of interest either

with a point‐measurement tool like ChemCam LIBS or a camera

like Mastcam. In both cases, enabling a rover to emulate ground‐
targeted behavior requires the capability to plan rasters and

mosaics on board. We have developed the Onboard Raster And

Mosaic Planner (OnRAMP) algorithm to provide this capability. As

with DOTS, OnRAMP works by using the output of other software

such as TextureCam to identify a feature or region of interest.

Then, using a dynamic programming algorithm, OnRAMP plans a

series of point measurements or image frames to construct a

raster or mosaic that optimally measures the identified feature or

region. In our field experiments, we use OnRAMP to plan image

mosaics of features that are too large to fit in a single frame.

These include mosaics of contact regions or layering within

outcrop.

The tools described above are designed to enable scientists to

mix and match capabilities to provide the appropriate guidance to

autonomous science at each location of interest. For the purposes of

our field experiments, to reduce planning complexity for the scien-

tists, we create predefined “scripts” that the scientists can use more

easily by only specifying a few key parameters. As an example, sci-

entists might request “2–4 LIBS observations of light gray unit at

location A” or “1–2 images of the contact between the dark gray and

F IGURE 8 Left: The Murray–Stimson contact at Marias Pass. Center: The Murray (blue) and Stimson (yellow) units are identified using
TextureCam. Right: FORC is used to derive a contact score, with the highest‐valued regions highlighted (green) [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 9 Left: MSL Navcam image of a butte in the Murray
Buttes region of Gale Crater. Right: FOLD results, with hotter colors
indicating higher SNR for layer detection and black bars showing the
inferred orientation for the regions of the image with the highest
SNR. SNR, signal‐to‐noise ratio [Color figure can be viewed at
wileyonlinelibrary.com]
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tan units at location B.” Thus, scientists have a menu of options to

choose from rather than needing to construct each combination of

capabilities from scratch.

6 | SLIP ‐AWARE NAVIGATION

This section provides an overview of the slip‐aware navigation

system. The navigation systems equipped on the Mars rover

missions, Mars Exploration Rover (MER) and MSL, rely on the

grid‐based estimation of surface traversability applied to local

terrain (GESTALT) algorithm (Goldberg et al., 2002) to detect and

avoid local geometric hazards and the D* algorithm (Stentz &

Mellon, 1993) to plan global paths to goals. These methods have

enabled operators to provide high‐level autonomy goals to the

rovers, increasing mission efficiency.

However, geometry alone is not sufficient to guarantee success

in every Martian environment. Both MER and MSL operators have

experienced hazardous conditions due to otherwise geometrically

benign terrain such as sand dunes. These hazards can create adverse

conditions such as wheel slip and sinkage. Excessive slip in terrain

with little traction can cause rovers to become stuck. An example is

the MER rover Spirit, which became stuck in a sand pit and even-

tually lost power due to its inability to tilt and orient its solar panels.

As a result, when current Mars rovers pass through environments

with hazards undetectable by the on‐board nav systems, operators

must resort to manual control with slow and deliberate commands,

resulting in a loss in efficiency. In response, this paper proposes a

navigation system that can reason about geometry and terrain type

to plan safe reliable paths to science targets and enable a larger role

in autonomy for future Mars Rovers.

The slip‐aware navigation system, highlighted in Figure 11, is

built upon the GESTALT system (Goldberg et al., 2002) and contains

the following components: (i) stereo vision, (ii) visual odometry (VO),

(iii) terrain classification, (iv) traversability assessment, (v) path

planning, and (vi) execution. The input to system is a synchronized

pair of stereo images from the rover's navigation cameras. Image

data is processed by the OpenCV (Bradski, 2000) block matching

algorithm to obtain a dense, 3D point cloud. Concurrently, the left

stereo image is processed by the TextureCam (Thompson et al.,

2012) terrain classifier to detect sand hazards. Further details on this

classifier can be found in Section 5.2. Both texture and depth in-

formation are then processed by the Jet Propulsion Laboratory (JPL)

VO method detailed in Howard (2008) to compute the relative mo-

tion between images. The dense stereo point cloud, sand hazard

classification, and rover pose is incorporated into an occupancy grid

map, and assessed for both geometric and terrain hazards in the

traversability‐assessment module. This map is furthermore labeled

with a‐priori terrain information to inform the slip‐aware planner.

Geometric Hazards are assessed and mapped using a modified ver-

sion of the GESTALT (Goldberg et al., 2002) mapping method to

account for geometry and terrain type. This map information is used

by the RRT# sample‐based planner (Arslan & Tsiotras, 2016) to plan

safe paths around geometry‐ and terrain‐based hazards that mini-

mizes expected slip.

Our navigation system plans paths on a map that builds upon the

data structure detailed in (Goldberg et al., 2002)—an occupancy‐grid
map fitted to a local ground plane with point‐cloud statistics. The

slip‐aware navigation system improves on this map structure by

adding terrain information for each point in the stereo point cloud.

An example of this map structure is seen in Figure 12. Point clouds

are accumulated to compute geometry and terrain statistics at each

cell in the map. To assess the traversability of the map at each cell, a

plane the size of the rover is centered and fitted to the containing

points. Each cell in the map contains the following information:

(i) maximum step‐size, (ii) roughness, (iii) slope, and (iv) terrain in-

formation. Terrain information comes in the form of a discrete

F IGURE 10 Left: MSL Navcam image with outcrop classifications
(exceeding 50% confidence) from TextureCam in red. Right: diverse
onboard target selection results, showing a set of point‐
measurement locations proposed to measure the identified outcrop
[Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 11 Illustration of the slip‐aware navigation pipeline. This navigation system uses both geometry and texture from stereo images
and a priori orbital maps, assess hazards to the rover, and plan safe paths in challenging environments with high‐slip risks. This will allow rover
operators to plan longer autonomous traverses in difficult terrain
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probability distribution for the three terrain types of interest: soil,

sand, and flagstone. This information can either come from an a

priori map, with the use case being an orbital map labeled by human

operators, or from the on‐board terrain classifier. This information is

used to compute a goodness metric, ⋅g( ), for a given map cell, c:

=g c f f f f( ) min( (step), (roughness), (slope), (sand)),i (1)

where ⋅f( ) computes the goodness of each parameter and returns a

value between 0 and 1, where 0 is lethal and 1 is benign:
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The parameters α β{ , } refer to the minimum and maximum safe va-

lues for each goodness parameter. This goodness map, where each

cell contains a goodness metric is thresholded to obtain a binary

obstacle map with C‐space expansion. Lethal obstacles can be seen in

Figure 12 as pink areas with light blue borders.

The slip‐aware navigation system plans safe paths that avoids

geometric‐ and terrain‐based hazards by employing the sample‐
based planner, RRT# (Arslan & Tsiotras, 2016) and the terrain‐aware

traversability map to make informed decisions on expected wheel

slippage. The sample‐based planner constructs a random graph

where vertices contain robot poses and edges link poses by vehicle‐
constrained motion primitives (Pivtoraiko et al., 2009) in the form of

pairs of fixed distance arcs. During planning, new vertices are con-

sidered as viable if they do not intersect with any geometric or

terrain obstacles (sand) in the map. The cost of edges in the graph,

and distances between vertices, is a function of the edge's motion

primitive distance weighted by an expected slip profile for each

terrain type. Terrain slip profiles map slope to expected rover slip for

a given terrain type. This planner furthermore takes into account

direction of travel when adding a new sample.

We experimentally validate the slip‐aware navigation system

with an isolated test in the northeast corner of the JPL Mars Yard.

This Mars analogue environment consists of a 20 × 12m area seen in

Figure 13 and the top corner of Figure 20. This section of the Mars

Yard consists of loose soil and bedrock, colored in Figure 13 as light

and dark brown, respectively. Half of the slope consists of slippery,

loose sand, and half of the slope consists of grippy bedrock. This

information is feed to the system in the a priori map, with slip pro-

files for soil and bedrock at 17 degrees characterized as 50% and 0%,

respectively. The test consisted of starting the rover at the bottom of

a 17 deg slope (green circle), commanding the rover to drive to a

waypoint at the base of the slope (black circle), and then to the final

goal at the top of the slope (gold star). This was done with the slip‐
aware navigator, and the slip‐unaware navigator, which only is

identical to the previous but only minimizes arc distance when

planning paths.

Results of the test are seen in Figure 13. The path planned for the

slip‐unaware planner is depicted by a red line, and the planned path for

the slip‐aware planner is depicted by a blue line. During the first tra-

verse, from the rover start to the waypoint both planners plan very

similar paths. The geometric obstacle, a large boulder is avoided to

arrive at the waypoint. On the second leg of the traverse which takes

the rover directly up the path, the slip‐aware planner diverts the rover

to the less slippery bedrock to reach the goal. This shows the planners

ability to plan longer paths to avoid excessive slip.

7 | GLOBAL LOCALIZATION

Position knowledge of the rover is traditionally estimated using vi-

sual odometry and inertial measurements. Although visual odometry

is reliable, position estimates accumulate drift errors on the order of

2% of the distance traveled. This poses a significant challenge for

executing long autonomous drive plans due to the growth in

uncertainty of the target waypoint, keep‐out zones, and so forth.

F IGURE 12 The traversability map used by the slip‐aware planner. This 2D Grid map is based on the GESTALT traversability map (Goldberg
et al., 2002) with the addition of labeled terrain information from either an a priori map or an onboard terrain classifier. Traversability is a
function of underfoot plane statistics, maximum step tolerances, and terrain type. The figure in the map is colored by a priori terrain type,

where green is loose soil, and red is embedded bedrock. Obstacles are colored as pink with light blue expansion zones [Color figure can be
viewed at wileyonlinelibrary.com]
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For MSL, this drift is corrected manually by rover operators using

visual alignment of navcam imagery to orbital HiRISE imagery. To

estimate this alignment, a mosaic of navcam stereo images are taken

to cover a full panoramic around the rover. These images are then

orthographically projected and salient surface features are manually

tie‐pointed to compute a correction offset (Figure 14).

The SRR employs both longer drives as well as multi‐sol opera-
tions without the involvement of ground operators to perform lo-

calization corrections. To achieve this, a similar method of aligning

navcam imagery to orbital maps is used in an automated manner

onboard the rover. Instead of keypoint tie‐pointing, the images are

aligned using a match criteria on both the image intensities and the

elevation map. Although position estimates accumulate drift, the

attitude of the rover is known to high accuracy using the IMU and

solar alignment. As a result, navcam stereo imagery can be accurately

projected into an orthographic map and aligned in azimuth, leaving

only the translation to be estimated.

The navcam images are projected with a spatial resolution of

25 cm/px to match orbital imagery from HiRISE. Similarly the ele-

vation maps are projected to match the HiRISE DEMs at 1m/px.

Global position is estimated using a template match of both the

surface imagery and elevation maps in the vicinity of the last VO

estimate, using a search range bounded by the worst‐case drift.
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The matching criteria for the imagery uses mutual‐information,

or relative entropy, between the images (Ansar & Matthies, 2009).

This measures the statistical dependence between corresponding

pixels of a candidate alignment. Mutual information is used instead

of more conventional correlators such as sum of absolute differences

or normalized cross correlation for robustness to differences in

lighting or surface conditions when the orbital images were acquired.

Mutual information is defined in Equation (2), where X and Y are the

orthoprojected navcams and HiRISE images respectively, with pixel

intensities x and y . The joint probability pXY and marginals pX and pY

are estimated with histograms. The elevation map alignment uses a

conventional sum of squared differences correlator. The overall

matching score is a weighted sum between the image and elevation

scores.

Conducting global localization experiments in the Mars Yard is

problematic due to the large number of artificial structures, as well

as the volatility of object movement within the yard. Instead, we

experiment with navcam data taken from the MSL traverse between

sols 1 and 2003, consisting of 6391 navcam images. The ground‐
truth trajectory is obtained from the manually aligned rover position

at the end of each drive. The correction offset from this alignment is

then interpolated backwards to the beginning of the drive to form a

smooth path. The localization errors are shown in Figure 15.

Experiments were conducted by localizing individual navcam images,

and mosaics of all images captured from the same location, resulting

in a mean error of 0.76 and 0.91m respectively.

8 | MOBILITY HEALTH ASSESSMENT

Autonomous rover science is only practical if successful activity

completion can be assured. The rover must respond appropriately to

hazards and system failures, sacrificing science activities where ne-

cessary to preserve system health, but also reliably recognizing and

recovering from routine interruptions, many of which currently re-

quire ground‐in‐the‐loop resolution. Existing rover fault protection

can be elaborate (MSL, for instance, has over 1000 distinct fault

monitors) but is defensive in nature, whereas future rovers must also

ensure operational efficiency. Simply expanding the scope of fault

protection is unlikely to provide this additional capability.

Model‐based reasoning offers one approach to compensate for

failures, whether due to uncertainty in the environment, plan, or

rover performance itself. The SRR prototype incorporates Model‐
based Off‐Nominal State Identification and Detection (MONSID)

(Kolcio & Fesq, 2016), which analyzes command and sensor data in

F IGURE 13 Slip‐aware navigation results
from a small test in the JPL Mars Yard [Color
figure can be viewed at
wileyonlinelibrary.com]
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real‐time, constructing an estimate of system health that is available

to other autonomy components on‐board. MONSID utilizes the

constraint suspension technique (Fesq, 1993) to perform fault de-

tection and diagnose likely causes of failure. MONSID consists of a

diagnostic engine and a system model, the latter containing simpli-

fied physics models comprising a network of numerical constraints

between sensed and internally computed parameters. The model

also relates these constraints to physical or logical components of

the host system, allowing inconsistencies to be linked to responsible

components.

MONSID was used previously to model and diagnose rover

electrical power subsystems (Kolcio et al., 2017), illustrating its

suitability to rover‐specific challenges. A second MONSID model was

developed for integrated testing with the Self‐Reliant Rover, con-

centrating on Athena mobility systems and associated sensors, and

exercised with seeded faults before full‐scale demonstration in si-

mulated autonomous science scenarios (Kolcio et al., 2019).

The MONSID mobility model is summarized in Figure 16. Orange

boxes represent rover components or pseudocomponents. Blue ovals

indicate command or sensor values provided from the system. Data

provided to components, and connections between components,

flow through ports, indicated by green boxes. These connections

represent transfers of state variable estimates into components or

from one component to another. State variable estimates are tested

within each component against mathematical constraints, which are

reevaluated whenever new data arrives.

In this specific model, each of Athena's six wheels is associated

with separate steering and drive motors, and each motor corre-

sponds to a distinct MONSID component. Position encoders provide

feedback to each controller. At the system level, Athena control

software sends steer angle and drive distance commands to each

wheel individually, coordinating the six wheels to follow a com-

manded path described by a series of arcs. The arc commands are the

only external inputs to the MONSID chassis component, which re-

presents the system‐level controller.
As command and sensor data arrive, MONSID propagates new

data through the model. In each component, evaluation of con-

straints produces one or more predictions about other state

F IGURE 14 Global localization utilizes automated alignment of navcam image and elevation maps to onboard orbital maps [Color figure can
be viewed at wileyonlinelibrary.com]

F IGURE 15 Error histograms for global localization on Mars Science Laboratory traverse using single navcam images (left) and navcam
mosaics (right) [Color figure can be viewed at wileyonlinelibrary.com]
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variables, which are then compared against sensor data or predic-

tions provided from other components. Any significant discrepancy

in these estimates implies that either the sensor data are wrong, or

there has been a violation of our behavioral assumptions. This allows

MONSID to detect failures both in rover software and hardware,

whether due to command errors, mechanical or electrical faults, or

terrain.

Model‐based diagnosis thus addresses the following needs of the

Self‐Reliant Rover:

• Detect and classify recoverable mobility faults: Determine whe-

ther interruptions are terrain‐induced or caused by mechanical

failure, and whether the rover should autonomously retreat and

avoid the problematic terrain.

• Sense errors in terrain knowledge: Determine whether trajectory

deviations are

caused by mechanical failure, sensor failure, or incorrect assess-

ment of terrain. In the latter case, terrain knowledge may be re-

covered by comparison to alternate models of terrain

characteristics.

• Recognize emergent,unknown,or surprise behavior: A significant

autonomy challenge is the risk of unexpected behavior in re-

sponse to novel or untested conditions. However, due to its re-

liance upon physical principles instead of purpose‐built monitors,

model‐based health assessment can often detect and correctly

classify novel system behavior, including problems arising from its

own autonomy software.

MONSID model development included testing against Athena

mobility data captured over a variety of terrain, in nominal operating

condition and tests with injected system faults. Fault testing included

hardware faults, such as simulated drive and steer motor failures,

and faults more consistent with software or command errors such as

steer motor polarity errors. Improper commanding is a fault case of

particular interest to autonomous system developers because com-

mands sourced on‐board cannot be verified in the traditional man-

ner, and these faults may be ignored by a traditional fault

management system. However, where incorrect commands conflict

with the expected system behavior, they can be detected and iso-

lated in a systematic manner.

A typical result from a simulated command error is shown in

Figure 17. Command errors affecting only a single wheel did not

impede overall rover motion (and thus might go undetected for some

time), but did result in unwanted drag with the potential to cause

irreversible damage.

The MONSID system reacted to this test case by finding de-

viations in several mobility system components―not only was the

sensed angle inconsistent with other steer angles, but the steering

error propagated through several other constraints and tripped ad-

ditional discrepancy alerts. Detection occurred before starting the

forward drive, thus providing an opportunity to react to the fault

before the rover suffered damage.

After detecting the fault, MONSID attempted to isolate a likely

cause. In this case the features initially detected indicated one or

more problems with either of the right corner wheels or with the

F IGURE 16 MONSID model of Athena mobility components [Color figure can be viewed at wileyonlinelibrary.com]
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control software. However, as multiple constraints were violated,

successive suspension of violated constraints quickly confirmed that

failure of the right rear wheel is the correct solution. Algorithmically

this is somewhat equivalent to traditional troubleshooting, but with

the advantage of proceeding without predefined tests or checklists,

relying instead only on the system model.

The most difficult task for health assessment is the ability to

sense and react appropriately to previously unknown behavior.

MONSID was given such an opportunity in early 2018: The Athena

team was surprised when one of the front wheels rose from the

surface of a steep slope while the other five wheels remained in

contact, behavior thought impossible due to Athena's suspension

geometry. The behavior was replicated and found to be caused by

unusually high traction in a center wheel, coupled with slippage of

both rear wheels. This led the center wheel to drive forward relative

to the rover as a whole, rotating the bogie in the process.

This behavior is interesting because it only manifests at the

system level―all individual rover components operate in familiar

and acceptable ways. It is therefore unlikely that this behavior would

be halted, and perhaps not even noticed, by a traditional fault pro-

tection system. The actual root cause is a violation of more funda-

mental assumptions about the rover, specifically a change in wheel

geometry while on flat terrain. These assumptions are implicit in the

MONSID constraints, and thus the novelty of this situation is de-

tected without difficulty, despite having never been observed in

previous years of testing and experience with Athena.

Mission operations would probably desire the Self‐Reliant Rover
to suspend further motion if this occurred, allowing controllers to

thoroughly analyze the new behavior and check for previously un-

known vulnerabilities. MONSID's responsibility in this case is simply

to detect the event and classify it as a ground‐recoverable fault.

However, MONSID also provides diagnostic information to assist in

event analysis, in this case isolating the fault to the center and rear

wheels instead of any control fault―indeed, MONSID exonerates

the wheel that actually rises from the surface. MONSID's conclusion

is correct, despite initial appearances to the contrary.

9 | SYSTEM EVALUATION: MARS YARD
WALKABOUT CAMPAIGN

We have developed a prototype implementation of the SRR approach

using the Athena research rover. The Athena rover, shown in Figure 18,

is roughly the size of the Spirit and Opportunity rovers from the Mars

Exploration Rovers mission. Similar to those rovers, Athena has six

wheels with rocker‐bogie suspension with navigation cameras mounted

on a pan/tilt mast. It should be noted that our system is still in a pro-

totype stage in which not all bugs have been worked out. However, we

wanted to conduct a fairly ambitious evaluation of the system in this

relatively early stage to help guide future development. To facilitate this

evaluation, we developed a “checkpointing” capability that allowed us to

save a snapshot of the state of execution and resume execution from a

previous checkpoint. This enabled us to restart execution from saved

checkpoint if a problem was encountered without having to restart from

the very beginning. As such, the results that follow represent a com-

posite of executions.

To evaluate the ability of the SRR approach to increase pro-

ductivity we conducted a simulated campaign in which actual pla-

netary scientists used our system to explore a geographical region.

We selected a “walkabout” campaign for our evaluation. A walkabout

is a reconnaissance campaign in which the rover makes an initial pass

over the region of interest performing remote sensing observations.

The operators use information collected from the walkabout to make

an informed decision about which locations to revisit for more in‐
depth study including potential sampling operations. We selected a

walkabout campaign for the evaluations because it has been found to

be an effective means of exploring a region of interest (Yingst et al.,

2017) and is anticipated to be used in the Mars 2020 mission to help

identify sampling locations.

As mentioned in Section 7, evaluating global localization in the

Mars Yard is problematic due to artificial structures. Further, in-

cluding health assessment in the evaluations would have resulted in

the artificial injection of faults which could perturb the results. As

such, the global localization and health assessment components were

not included in the walkabout evaluations. Instead, more targeted

evaluations were performed on these components in as described in

Sections 7 and 8.

9.1 | Objectives

Figure 19 summarizes the objectives of the evaluation. For the pri-

mary objective, we wanted to evaluate how well the SRR approach

enabled the operators to maintain high levels of productivity with

limited ground‐in‐the‐loop interactions with the rover. As discussed

in Section 2.3, the strong reliance ground‐in‐the‐loop interactions

was a major factor in limiting productivity in the MSL campaigns that

we studied. As noted in Section 1, this reliance on ground‐in‐the‐loop
interactions is expected to become an increased liability with non‐
sun‐synchronous relay orbiters.

The productivity metrics we used are based on the MSL case

study we conducted in the first year of the project (Gaines et al.,

F IGURE 17 A simulated software error leading to an incorrect
steering angle [Color figure can be viewed at wileyonlinelibrary.com]
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2016). These metrics relate to how long it takes to accomplish

campaign objectives. The percentage of sols that contribute toward

campaign objectives provides a measurement of how effectively each

sol is used during the campaign. For our simulated campaigns, our

participating scientists were the judge of whether the activities in a

sol made “significant contributions” toward campaign objectives. The

objectives of the campaign were to collect observations that char-

acterize geographical areas. The scientists made an assessment as to

whether the observations performed by the rover provided a sa-

tisfactory characterization of the area. To be considered a pro-

ductivity sol, the sol must include activities to satisfactorily

characterize at least one location or drive an efficient route to a

target of interest to the scientists.

In the MSL campaigns we studied, we observed that almost half

of the sols were not making significant contributions toward cam-

paign objectives. We wanted to determine if the SRR approach could

improve this measurement. The related metric, number of sols to

complete objectives, is simply the number of sols required for the

team to complete the simulated campaign. The number of locations

surveyed is a rough measure of the quality of the campaign.

Generally speaking, more locations surveyed will increase the sci-

entists' understanding of the region enabling them to make more

informed decisions about which locations to revisit.

9.2 | Methodology

For our region of interest, we constructed geological scenes in the

JPL Mars Yard. Figure 20 shows the area we created. We simulated a

larger area by applying an 8x scaling factor to the actual Mars Yard

dimensions. This allowed us to simulate a longer‐duration mission

than would otherwise be feasible in the Mars Yard. We similarly

scaled time between the simulated mission and actual rover activity

to match realistic activity durations from MSL operations.

Three planetary scientists from the MSL mission participated in

the evaluations. We prepared strategic guidance for the scientists

similar to the guidance they would be provided for an actual cam-

paign on Mars. This included the labeled imagery in Figure 20

showing units and features identified from “orbital” data. The team

was also provided with the contextual information and strategic

guidance for the campaign shown in Figure 21.

This included contextual background for the campaign, specific

objectives and a high‐level “sol path.” The sol path specifies how the

week of sols will be broken down into planning sessions. This is

primarily driven by the pattern of relay orbiter overflights that de-

termine when ground‐in‐the‐loop cycles are available. Because we

are interested in the impact of non‐sun‐synchronous orbiters, we

used a projected overflight pattern based on the MAVEN orbiter.

This resulted in the sol path shown in Figure 21c in which the seven

sols are broken up into three planning sessions consisting of two sols,

three sols and two sols, respectively.

9.3 | Results

9.3.1 | Plan 1: Sols 33, 34

We met with the scientists to collect their objectives for the first

phase of the walkabout campaign, the execution of Sols 33 and 34.

This first session raised an interesting choice the scientists have for

F IGURE 18 The Athena research rover [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 19 Objectives of evaluation
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interacting with the rover. They would be sending objectives to the

rover which would then have two sols to accomplish these objec-

tives. The scientists would then review the collected data and send

objectives for the next three sols.

With current rover operations, the team requires ground‐in‐the‐
loop interaction To specify objectives. As a result, if the team were

operating an MSL‐style rover, they would provide only the objectives

the rover could accomplish in the upcoming two sols.

In contrast, with the SRR approach, the scientists have the

option of providing more objectives to the rover than the rover is

expected to accomplish in two sols. There are a few advantages of

over‐subscribing the rover in this way. First, by giving the rover a

longer‐term view of the team's objectives, it can generate a

higher‐quality plan, though this comes at the cost of computa-

tional complexity. Second, if the rover is able to accomplish ob-

jectives more quickly, or with lower resource consumption, than

expected, it will be able to work on these additional objectives.

Third, though rare, there are occasionally problems with the up-

link process (e.g., hardware problems at the DSN station) that

result in loss of uplink. This is a major loss of productivity for

traditional operations as the rover is left largely idle until op-

erators are able to send command products at the next uplink

opportunity, which is at least one more sol in the future. In con-

trast, if the team gave the SRR additional objectives, it can con-

tinue to pursue those, even if the uplink is missed.

In our first planning session, the scientists chose to come up with

the complete set of objectives for the full walkabout campaign and

provide these up front to the rover. They would still have the op-

portunity to revise objectives the rover has not yet accomplished in

subsequent planning sessions, based on the data obtained so far.

Figure 22 shows the initial set of objectives that the scientists pro-

vided. It is notable that it took the team only 1 h to provide the full

set of objectives. Similar to actual operations, the scientists chose the

names for target and location names by selecting collection of names

centered around a theme. We opted for a light‐hearted theme with a

collection of Muppet names. The team made effective use of the

names with some of their assignments such as assigning Muppets

with similar coloring to the locations, such as Fozzie for a tan unit

and Pepe for an area with reddish rocks.

The scientists objectives included manually‐targeted observa-

tions (Figure 22b) in the area for which they had imagery from the

rover along with guidance for autonomous science (Figure 22c) in the

areas they have not yet seen. Manually targeting observations re-

present the predominant means that operators interact with an MSL‐
style rover. It has the advantage that scientists can specify the exact

targets for which they wish to collect data but has the disadvantage

that it requires a ground‐in‐the‐loop interaction. The team must re-

ceive imagery from the rover's location so that the team can select

targets and the rover must remain in that location until it receives

the manually targeted observations from the team. By providing a

means for scientists to guide autonomous science, we are attempting

to allow operators to direct the rover's autonomous selection of

targets with a reduced reliance on ground‐in‐the‐loop interactions.

However, the system still supports operator‐targeted observations

to take full advantage of the scientists' input when the team is able

to exploit a ground‐in‐the‐loop interaction.

Another design decision we needed to make was how to solicit

priority specifications from the operators. While our planner sup-

ports a continuous range of priorities, providing such granularity can

be problematic for operations. A large amount of time can be lost by

the team trying to assign such precise priority values. Instead, we

opted for a simple interface in which the team would select from just

two priority levels: Normal and High.

We provided the initial set of objectives to the Athena rover for

execution of the first two sols of the walkabout. The execution of

Sols 33 and 34 took less time that modeled allowing the rover to

arrive at Fozzie with enough time to complete the survey at this

location before the end of sol 34. This was expected behavior as we

F IGURE 20 Aerial view with labels from the simulated Strategic Science Working Group [Color figure can be viewed at
wileyonlinelibrary.com]
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intended to slightly over‐estimate the durations of rover activity.

This was done as it is generally less disruptive to replan and take

advantage of surplus time than to replan to resolve conflicts that

arise when activities take longer than expected.

Figure 23 shows the results of autonomous science for the first

two sols. The figures show the targets selected for each detector

selected by the scientists along with the confidence of the classifi-

cation. In general, the system did a good job of identifying targets. In

the cases that there were examples of a given class, the rover picked

out good targets such as dark outcrop at Zoot, dark rock at Sweet-

ums and tan outcrop and reddish rock at Fozzie. Note that the de-

tectors are not perfect and included some miss‐classifications. For
example, The edge of a light gray outcrop was falsely classified as

dark outcrop at Zoot, soil was incorrectly classified as tan outcrop at

Fozzie (but with relatively low confidence) and the shadow of a rock

was classified as a reddish rock at Fozzie. Also at Fozzie, the de-

tectors missed some examples of light red rock. This was due to the

training set used for reddish rocks consisting of dark red rocks. While

additional training would likely improve these results, we do not

expect to achieve perfect classification with these autonomous sci-

ence detectors and were pleased to have some false examples to

present to the scientists to illustrate the range of behavior the sys-

tem can exhibit.

The Zoot results show another example classification error in

which the rover's shadow was mistaken for dark outcrop. In practice

it is not difficult to filter out the rover's shadow. The flight software

on the actual mars rovers tracks the sun position and could be up-

dated to know where in a given image its own shadow falls. This

would allow filtering out targets that are covered by the rover's

shadow.

9.3.2 | Plan 2: Sols 35, 36, 37

We met with the scientists and presented the results of the first

plan's execution. We asked if they wanted to provide new objectives

or change any of the objectives already provided to the rover but not

yet accomplished. The team considered whether they wanted to

return to any previously visited areas to perform additional ob-

servations but decided that the rover had collected a sufficient

amount of data at those locations to meet the walkabout objectives

and preferred that the rover continue on to new areas.

They did, however, make some adjustments to the autono-

mous science guidance they had provided in the previous plan.

Most notably was removal of contact detection from some loca-

tions that did not have a noticeable contact from the orbital

imagery. This decision was the result of the scientists learning

about the capability of the contact detector from the example

results at Sweetums and Fozzie. Their intent for the contact de-

tector was to identify visual variations within a scene, such as a

transition from lighter to darker gray in outcrop. However, the

contact detector we have developed at this point sometimes

struggles to detect contacts where the color variation is subtle. As

such, the scientists opted to reserve its use for locations expected

to have a stronger contact. This resulted in removing contact

detection at Gonzo and Scooter. They considered removing con-

tact detection from Pepe but decided to retain it to see if there

was a contact between reddish rock and tan outcrop at this lo-

cation. This was a useful interaction as it points to the value of

developing a detector that can identify such variations within a

scene and propose follow‐up observations to document the

changes.

(a)

(b) (c)

F IGURE 21 Strategic objectives for the Mars Yard walkabout campaign. (a) Context for campaign. (b) Objectives of walkabout. (c) High‐level
sol path for the campaign [Color figure can be viewed at wileyonlinelibrary.com]
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(a)

(b)

(c)

(d)

F IGURE 22 Objectives and expected plan for Sols 33, 34. (a) Orbital view. (b) Operator‐targeted observations at Start location.
(c) Autonomous science guidance, (d) High level sol path [Color figure can be viewed at wileyonlinelibrary.com]
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This second session with the scientists provided another inter-

esting decision point for the scientists. The rover had already per-

formed autonomous science at Fozzie, with the results available to

the team, and the rover would still be at this location when it re-

ceives the next uplink. This provided the scientists to select their

own targeted observations at Fozzie before proceeding on with the

rest of the walkabout. Figure 24 shows the targets the scientists

chose, in diamonds, along with the targets already acquired by the

rover. The result demonstrates the value of combining autonomously

targeted and scientist targeted observations. The scientists benefited

from the rover already performing some observations as they could

spend less time at this location to complete the survey. The scientists

chose two additional observations of tan outcrop with leveraged the

two observations already performed by the rover. The scientists

chose to space their observations a uniform distance from the ro-

ver's selection enabling them to measure the lateral heterogeneity of

the outcrop. They also selected one of the light reddish rocks that

was missed by the rover.

The execution of the second plan highlighted the use of the slip‐
aware navigator. While traveling to and from the Gonzo target, the

rover was able to detect and maneuver around sand hazards. These

drives would have required additional ground‐in‐the‐loop cycles with

current operations because current rovers are unable to identify

sand hazards on their own and orbital imagery often has insufficient

resolution to identify sand hazards ahead of time.

Figure 25 shows some of the autonomous science results from

the second plan. As with the first plan, autonomous science generally

did a good job of identifying targets when there were examples of

the intended class in the scene. The scientists were particularly

happy with the results at Dr. Julias Strangepork, Figure 25a. This was

one of the most important locations as this is where orbital imagery

showed that the tan and gray units would be in contact. The rover

was able to identify examples of tan and gray outcrop and success-

fully identified and documented the contact between the units. In

addition, the rover identified layering in the scene. This was an im-

portant observation as it enabled the scientists to confirm the orbital

impression from Figure 20.

This location also raised an important lesson for our future work.

While the rover correctly identified examples of the tan unit, the

locations it selected for follow‐up were tightly clustered. The scien-

tists indicated that they would prefer these targets be better dis-

tributed across the outcrop. This was not a problem with the

underlying tan outcrop detector. As shown in Figure 26 it did a good

job of identifying almost all of the tan outcrop. The problem is that

we choose follow‐ups by picking the contiguous regions of the image

with highest average confidence. This can result in clustering results.

Instead, we learned that we should also take into account spatial

distribution when selecting targets.

9.3.3 | Plan 3: Sols 38, 39

The rover was traveling toward the final location, Animal, at the end

of Sol 37 but had not yet reached the target when it had to stop for

the night. The expected plan for Sol 38 was for the rover to complete

the drive to Animal and perform the requested survey of the

location.

The scientists decided to let the rover complete the objectives

without modification. And even though there was another sol

available for them to use for execution, they decided that the rover

(a) (b)

(c)

F IGURE 23 Autonomous science results from Sols 33, 34. (a) Autonomous science at Zoot. (b) Autonomous science at Sweetums.
(c) Autonomous science at Fozzie [Color figure can be viewed at wileyonlinelibrary.com]
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had sufficiently surveyed the region to meet the objectives of the

walkabout. Rather than surveying additional locations, they decided

to conclude the first pass of the walkabout.

9.3.4 | Discussion

Following the field test, we met with the scientists for a final session

to evaluate the results of the walkabout campaign. To determine

how well the rover performed in the walkabout we asked the sci-

entists to review the results of each visited location and assess if the

location had been sufficiently surveyed to meet the campaign ob-

jectives. While there were cases where the scientists would have

selected different observations from those selected by the rover,

they concluded that each location had been sufficiently surveyed.

Further, they concluded, given the locations that were visited, that

the walkabout had successfully achieved the strategic objective of

surveying the Mars Yard region.

As a means of evaluating the productivity improvement of the

SRR approach, we performed an analysis to determine the best‐case
execution of the campaign using an MSL‐style rover. The analysis

was based on the ground‐in‐the‐loop decisions that would be re-

quired by an MSL‐rover, limiting the amount and type of activity that

can be performed each sol. For each ground‐in‐the‐loop cycle, an

MSL‐style rover would be limited to surveying at most one location,

due the reliance on operators selecting observations, and driving to

the next location. For the two drive segments that required the rover

to avoid sand, an MSL‐style rover would require additional ground‐
in‐the‐loop cycles as it would rely on human operators to identify the

sand hazards and plan paths around them.

Note that this analysis represents a best‐case scenario as it did

not incorporate factors such as drive faults, operations procedure

times or mission risks and policies. Such factors would result in

reducing the productivity measurements of this comparison mission.

As such, by excluding these factors, we are making a more con-

servative assessment of the SRR approach versus this best‐case MSL

campaign.

Figure 27 provides quantitative measurements of the pro-

ductivity improvements achieved by the SRR approach. In Figure 27a

we provide a breakdown of sol productivity similar to the ones we

performed for the MSL case study in Section 2.3.1. The MSL ap-

proach was projected to have 32% low productivity sols due to the

need to wait for ground‐in‐the‐loop for performing location surveys

and to guide the rover around areas with sand hazards. In contrast,

the SRR approach was able to make significant progress toward

campaign objectives on each sol. This results in SRR achieving a 47%

increase in productive sols.

F IGURE 24 Operator‐targeted observations at Fozzie location
[Color figure can be viewed at wileyonlinelibrary.com]

(a)
(b)

(c)

(d)

F IGURE 25 Autonomous science results from Sols 35, 36, 37. (a) Autonomous science at Dr. Julias Strangepork. (b) Autonomous science at
Scooter. (c) Autonomous science at Pepe. (d) Autonomous science at Janice [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 27b compares the number of sols required to survey all of

the locations selected by the scientists. An MSL‐style rover would

require 28 sols to perform the survey while the SRR completed the

campaign in six sols. This represents an 80% reduction in sols to

complete the campaign.

Finally, in Figure 27c we compare the number of locations the

rovers would be able to survey if the project chose to restrict the

walkabout to a single week. An MSL‐style rover would survey only

three locations while the SRR surveyed 11 locations. This is a 267%

increase in number of locations surveyed.

Overall, the walkabout campaign demonstrated that the SRR

approach is able to maintain high levels of productivity with limited

ground‐in‐the‐loop cycles. The approach provided mechanisms that

allow the scientists to effectively guide the rover's behavior despite

the limited communication opportunities.

The key to the increase in productivity was the ability of the SRR

approach to conduct effective characterization activities with re-

duced ground‐in‐the‐loop dependency. This was achieved with a

combination of several components in our system. The autonomous

science component allows the rover to analyze geographical scenes

and select targets for follow‐on observations guided by scientist in-

put. The Goal Planner allows the activity plan to be dynamically

updated to safely perform the observations selected by the Auton-

omous Science component and reserve resources for subsequent

scientist objectives. The Navigation system was needed to safely

maneuver around areas of loose sand that would require ground

intervention with currently Mars rover capabilities.

10 | RELATED WORK

Shalin, Wales, and Bass conducted a study of Mars Exploration

Rovers operations to design a framework for expressing the intent

for observations requested by the science teams (Shalin et al., 2005).

Their focus was the use of intent to coordinate planning among

human operators and the resulting intent was not captured in a

manner that would be conducive for machine interpretation. Our

approach codifies some of the fields in their framework in a way

suitable for the rover. In particular, the authors defined a “related

observations” field as a way for scientists to identify relationships

among different observations, which need not be in the same plan.

Our work on campaign intent can be seen as a way of defining a

specific semantics to these types of relationships to facilitate rea-

soning about these relationships by the rover.

Their framework also includes information that we agree is es-

sential for effective communication among operators but that we do

not currently express to the rover. For example, the “scientific hy-

potheses” field is used to indicate what high‐level campaign objective

is being accomplished by the requested observation. We are not yet

providing these higher‐level campaign objectives to the rover,

though it is an interesting area of future research.

Mali views intent as a means for a user to place constraints on

the types of plans a planner is allowed to produce such as only

generating plans that have at most one instance of a class of actions

or that plans must limit the use of a particular action (Mali, 2016).

The primary role of our use of intent is to allow the planner to assess

the value of achieving a given set of goals. However, some of our

campaign intent does imply constraints and preferences on how, or

more specifically, when goals are accomplished. For example, the

periodic campaign intent specifies a timing relationship among goals

and a preference on how close to comply with the desired timing.

There are some similarities between our campaign definitions

and those used for Rosetta science planning (Chien et al., 2015). Both

use campaigns to express requests for variable‐sized groups of ob-

servations with relationships and priorities. Rosetta plans covered

much longer time periods (e.g., weeks) and required more complex

temporal patterns, such as repeating groups of observations. But

observation patterns were primarily driven by the predictable tra-

jectory of the spacecraft, allowing relationships to be expressed as

temporal constraints. This is not sufficient for rovers, where many

observations are dictated by the rover location and surrounding

terrain, and the duration of many activities cannot be accurately

predicted. State‐based and goal set relationships more accurately

represent some of the science intent found on surface missions.

There have been a variety of autonomous science systems de-

ployed or proposed for rovers including the AEGIS system running on

(a) (b)

F IGURE 26 Detection of tan outcrop at Dr. Julias Strangepork. (a) Pixels classified as tan outcrop. (b) Confidence of tan outcrop
classification, brighter pixels equals higher confidence [Color figure can be viewed at wileyonlinelibrary.com]
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the opportunity and curiosity rovers (Francis et al., 2017), and the SARA

component proposed for an ExoMars rover (Woods et al., 2009). These

systems allow the rover to identify targets in its surroundings that

match scientist‐provided criteria. The introduction of campaign re-

lationships broadens the scope of the type of guidance that scientists

can provide these systems, allowing scientists to express the amount of

observations they would like for their different objectives along with

the relative priorities of the high‐level objectives.
There have been several integrated rover systems with similar

objectives to our work including PRoViScout (Paar et al., 2012), Zoe

(Wettergreen et al., 2014), and OASIS (Castano et al., 2007). The

PRoViScout project has similar objectives to our work (Paar et al.,

2012). These systems include autonomous science capabilities to

enable onboard identification of science targets. Similar to our ap-

proach, they select follow‐up observations for identified targets and

submits these requests to an onboard planner to determine if there

are sufficient resources to accomplish these new objectives. The

campaign intent concepts we have developed would also be applic-

able to PRoViScout as a way to increase the expressivity for pro-

viding scientist intent to the rover.

There is an active area of research in intent recognition

(Sukthankar et al., 2014). The general goal of this area is to identify

the objectives of other agents (human or otherwise) from observa-

tions of the agents' actions. In contrast, in our work, it is acceptable

for users to explicitly identify their intent, rather than require the

system to attempt to infer intent. Indeed, there is interest in the

operations team to clearly document their intent for the purpose of

communication among teams and as a record of what activity was

planned for the rover and why. As such, rather than try to infer user

intent, our objective is to increase the expressivity of the rover's

interface to more closely reflect mission intent.

The Mars 2020 mission is planning to incorporate onboard

scheduling to improve resource utilization of the rover (Rabideau &

Benowitz, 2017). Similar to the SRR approach, the use of onboard

scheduling is intended to allow the Mars 2020 rover to use current

vehicle knowledge when generating schedules to accomplish mission

objectives. This will reduce the loss of productivity that results from

the difficulty in predicting how much resources (e.g., time and en-

ergy) activities will consume. The SRR approach is addressing addi-

tional productivity challenges by improving the ability of rovers to

identify their own objectives, to incorporate a richer set of guidance

from operators and to reason about slip hazards as it navigates. The

SRR and Mars 2020 planner face similar planning challenges in-

cluding integrating scheduling and execution (Chi et al., 2018), the

need for ground tuning of parameters to address onboard search

limitations (Chi et al., 2019), and the difficulty of managing complex

rover resources (Chi et al., 2020).

The navigation system presented in this paper is most similar to

the system presented in (Helmick et al., 2009). They propose a sys-

tem with the same high‐level machinery: (i) a GESTALT‐based vision

pipeline, (ii) a terrain classifier, and (iii) a slip‐aware planner. How-

ever, their system is not capable of making decisions based on di-

rection of travel. When direction of travel is not considered, then the

system is forced to make more conservative plans. An example is if

the rover is planning a path on a steep slope containing soil, it might

be too dangerous to drive up the slope due to expected slippage, but

driving downhill would be safe.

Model‐based diagnostics are being actively studied in other

space contexts where traditional fault protection and spacecraft

safing is insufficient, notably crewed spaceflight. There are many

efforts to mature similar technologies in NASA Exploration, such as

in Aaseng et al. (2015). Additional work is ongoing to mature model‐
based diagnostics with particular focus on verification and validation

of model‐based systems, including an effort related to this devel-

opment as described in Nikora et al. (2018).

11 | CONCLUSIONS

We have presented an approach for increasing the authority of au-

tonomous rovers to increase mission productivity. Our approach

includes the ability for ground operators to provide guidance to the

system without requiring up to date knowledge of the rover's state

and its surroundings.

(a) (b) (c)

F IGURE 27 Quantitative evaluation of SRR productivity. (a) For brevity, SRR pie chart not shown as it is 100% productivity, resulting in SRR
yielding 32% increase in sol productivity. (b) SRR achieved 80% reduction in sols to complete campaign. (c) SRR achieved 267% increase in
locations surveyed in one week. (a) Sol productivity. (b) Number of sols to complete campaign. (c) Locations surveyed in campaign.
SRR, Self‐Reliant Rover [Color figure can be viewed at wileyonlinelibrary.com]
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We have implemented a prototype of this approach on the Athena

test rover. The prototype includes advances in the areas of goal plan-

ning, autonomous science, health assessment, autonomous navigation,

and global localization. We evaluated the prototype in a simulated

walkabout campaign with Mars Science Laboratory scientists. The

evaluation demonstrated that the SRR approach can provide significant

increase in surface mission productivity with limited communication

with operators. The results showed the SRR approach reduced the

duration of the walkabout by 80% compared to the duration that would

have been required with current rovers.

To date, we have focused on rover activities that involved remote

sensing and driving. While this makes up a large portion of rover ac-

tivity, there are other rover activities such as robotic arm science and

sampling that we have not addressed. These activities have their own

type of productivity challenges that would benefit from a study similar

to what we have conducted for driving and remote sensing. In addition,

it would be helpful to conduct more simulated campaigns with different

groups of scientists and in a larger area. This would enable the inclusion

of the global localization and mobility health assessment components

into the simulated campaign evaluations.

In addition, we will be pursuing the inclusion of some of these

autonomy components into the Mars 2020 extended mission. In

particular, global localization and the new autonomous science

techniques we developed would be good candidates for incorpora-

tion during Mars 2020 extended mission as these technologies could

be integrated without changes to the existing flight software, similar

to the deployment of AEGIS on the Mars Science Laboratory rover

(Francis et al., 2017).
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